Department of Laboratory Medicine, Deyang People's Hospital, Deyang, Sichuan, China.
Department of Laboratory Medicine, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China.
Front Immunol. 2023 Sep 20;14:1233260. doi: 10.3389/fimmu.2023.1233260. eCollection 2023.
Disulfidptosis is a newly identified variant of cell death characterized by disulfide accumulation, which is independent of ATP depletion. Accordingly, the latent influence of disulfidptosis on the prognosis of lung adenocarcinoma (LUAD) patients and the progression of tumors remains poorly understood.
We conducted a multifaceted analysis of the transcriptional and genetic modifications in disulfidptosis regulators (DRs) specific to LUAD, followed by an evaluation of their expression configurations to define DR clusters. Harnessing the differentially expressed genes (DEGs) identified from these clusters, we formulated an optimal predictive model by amalgamating 10 distinct machine learning algorithms across 101 unique combinations to compute the disulfidptosis score (DS). Patients were subsequently stratified into high and low DS cohorts based on median DS values. We then performed an exhaustive comparison between these cohorts, focusing on somatic mutations, clinical attributes, tumor microenvironment, and treatment responsiveness. Finally, we empirically validated the biological implications of a critical gene, KYNU, through assays in LUAD cell lines.
We identified two DR clusters and there were great differences in overall survival (OS) and tumor microenvironment. We selected the "Least Absolute Shrinkage and Selection Operator (LASSO) + Random Survival Forest (RFS)" algorithm to develop a DS based on the average C-index across different cohorts. Our model effectively stratified LUAD patients into high- and low-DS subgroups, with this latter demonstrating superior OS, a reduced mutational landscape, enhanced immune status, and increased sensitivity to immunotherapy. Notably, the predictive accuracy of DS outperformed the published LUAD signature and clinical features. Finally, we validated the DS expression using clinical samples and found that inhibiting KYNU suppressed LUAD cells proliferation, invasiveness, and migration in vitro.
The DR-based scoring system that we developed enabled accurate prognostic stratification of LUAD patients and provides important insights into the molecular mechanisms and treatment strategies for LUAD.
二硫键细胞凋亡是一种新发现的细胞死亡方式,其特征是二硫键堆积,且不依赖于 ATP 耗竭。因此,二硫键细胞凋亡对肺腺癌 (LUAD) 患者预后和肿瘤进展的潜在影响仍知之甚少。
我们对 LUAD 中二硫键细胞凋亡调节因子 (DR) 的转录和遗传修饰进行了多方面分析,然后评估其表达模式以定义 DR 簇。利用从这些簇中鉴定出的差异表达基因 (DEG),我们通过融合 10 种不同的机器学习算法,在 101 种独特组合中构建了一个最佳预测模型,计算二硫键细胞凋亡评分 (DS)。根据 DS 的中位数将患者分为高和低 DS 组。然后,我们对这些组进行了全面比较,重点关注体细胞突变、临床特征、肿瘤微环境和治疗反应。最后,我们通过 LUAD 细胞系中的实验验证了关键基因 KYNU 的生物学意义。
我们确定了两个 DR 簇,它们在总生存期 (OS) 和肿瘤微环境方面存在显著差异。我们选择“最小绝对值收缩和选择算子 (LASSO) + 随机生存森林 (RFS)”算法,基于不同队列的平均 C 指数开发了基于 DS 的模型。我们的模型有效地将 LUAD 患者分为高和低 DS 亚组,后者的 OS 更好,突变景观减少,免疫状态增强,对免疫治疗更敏感。值得注意的是,DS 的预测准确性优于已发表的 LUAD 特征和临床特征。最后,我们使用临床样本验证了 DS 的表达,发现抑制 KYNU 可抑制 LUAD 细胞的体外增殖、侵袭和迁移。
我们开发的基于 DR 的评分系统能够对 LUAD 患者进行准确的预后分层,并为 LUAD 的分子机制和治疗策略提供重要见解。