Suppr超能文献

用于超短突发敏感 M13-PEG-WS 供电 MCF-7 癌细胞传感器的形状互补过程。

Shape complementarity processes for ultrashort-burst sensitive M13-PEG-WS-powered MCF-7 cancer cell sensors.

机构信息

Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.

Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.

出版信息

Nanoscale. 2023 Oct 26;15(41):16658-16668. doi: 10.1039/d3nr03573e.

Abstract

Biomarkers have the potential to be utilized in disease diagnosis, prediction and monitoring. The cancer cell type is a leading candidate for next-generation biomarkers. Although traditional digital biomolecular sensor (DBS) technology has shown to be effective in assessing cell-based interactions, low cell-population detection of cancer cell types is extremely challenging. Here, we controlled the electrical signature of a two-dimensional (2D) nanomaterial, tungsten disulfide (WS), by utilizing a combination of the Phage-integrated Polymer and the Nanosheet (PPN), ., the integration of the M13-conjugated polyethylene glycol (PEG) and the WS, through shape-complementarity phenomena, and developed a sensor system, , the Phage-based DBS (P-DBS), for the specific, rapid, sensitive detection of clinically-relevant MCF-7 cells. The P-DBS attains a detection limit of 12 cells per μL, as well as a contrast of 1.25 between the MCF-10A sample signal and the MCF-7 sample signal. A reading length of 200 μs was further achieved, along with a relative cell viability of ∼100% for both MCF-7 and MCF-10A cells and with the PNN. Atomistic simulations reveal the structural origin of the shape complementarity-facilitated decrease in the output impedance of the P-DBS. The combination of previously unreported exotic sensing materials and digital sensor design represents an approach to unlocking the ultra-sensitive detection of cancer cell types and provides a promising avenue for early cancer diagnosis, staging and monitoring.

摘要

生物标志物具有用于疾病诊断、预测和监测的潜力。癌细胞类型是下一代生物标志物的主要候选者。尽管传统的数字生物分子传感器 (DBS) 技术已被证明在评估基于细胞的相互作用方面非常有效,但对癌细胞类型的低细胞群体检测极具挑战性。在这里,我们通过利用噬菌体整合聚合物和纳米片 (PPN) 的组合来控制二维 (2D) 纳米材料二硫化钨 (WS) 的电信号。通过形状互补现象,将 M13 缀合的聚乙二醇 (PEG) 和 WS 集成在一起,并开发了一种传感器系统,即基于噬菌体的 DBS (P-DBS),用于对临床相关 MCF-7 细胞进行特异性、快速、灵敏的检测。P-DBS 的检测限达到了每微升 12 个细胞,并且 MCF-10A 样品信号和 MCF-7 样品信号之间的对比度为 1.25。进一步实现了 200μs 的读取长度,以及 MCF-7 和 MCF-10A 细胞的相对细胞活力约为 100%,而对于 PNN 则更高。原子模拟揭示了形状互补促进 P-DBS 输出阻抗降低的结构起源。以前未报道过的奇特传感材料与数字传感器设计的结合代表了一种解锁癌细胞类型的超灵敏检测的方法,并为早期癌症诊断、分期和监测提供了有前途的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验