CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China.
University of Chinese Academy of Science, Beijing 100049, P. R. China.
ACS Nano. 2023 Oct 24;17(20):20153-20166. doi: 10.1021/acsnano.3c05838. Epub 2023 Oct 6.
Flexible tactile sensors show great potential for portable healthcare and environmental monitoring applications. However, challenges persist in scaling up the manufacturing of stable tactile sensors with real-time feedback. This work demonstrates a robust approach to fabricating templated laser-induced graphene (TLIG)-based tactile sensors via laser scribing, elastomer hot-pressing transfer, and 3D printing of the Ag electrode. With different mesh sandpapers as templates, TLIG sensors with adjustable sensing properties were achieved. The tactile sensor obtains excellent sensitivity (52260.2 kPa at a range of 0-7 kPa), a broad detection range (up to 1000 kPa), a low limit of detection (65 Pa), a rapid response (response/recovery time of 12/46 ms), and excellent working stability (10000 cycles). Benefiting from TLIG's high performance and waterproofness, TLIG sensors can be used as health monitors and even in underwater scenarios. TLIG sensors can also be integrated into arrays acting as receptors of the soft robotic gripper. Furthermore, a deep neural network based on the convolutional neural network was employed for texture recognition via a soft TLIG tactile sensing array, achieving an overall classification rate of 94.51% on objects with varying surface roughness, thus offering high accuracy in real-time practical scenarios.
柔性触觉传感器在可穿戴式医疗和环境监测等领域具有广阔的应用前景。然而,在实现具有实时反馈功能的稳定触觉传感器的规模化制造方面仍然存在挑战。本工作展示了一种通过激光划线、弹性体热压转移和 Ag 电极的 3D 打印来制造基于模板激光诱导石墨烯(TLIG)的触觉传感器的稳健方法。使用不同目数的砂纸作为模板,实现了具有可调传感性能的 TLIG 传感器。该触觉传感器具有出色的灵敏度(0-7 kPa 范围内为 52260.2 kPa)、较宽的检测范围(高达 1000 kPa)、低检测限(65 Pa)、快速响应(响应/恢复时间为 12/46 ms)和出色的工作稳定性(10000 次循环)。得益于 TLIG 的高性能和防水性,TLIG 传感器可用于健康监测,甚至可用于水下场景。TLIG 传感器还可以集成到充当软机器人夹持器的受体的阵列中。此外,还使用基于卷积神经网络的深度神经网络通过软 TLIG 触觉传感阵列进行纹理识别,对具有不同表面粗糙度的物体的总体分类率达到 94.51%,从而在实时实际场景中实现了高精度。