Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA.
New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA.
Am J Hum Genet. 2023 Oct 5;110(10):1750-1768. doi: 10.1016/j.ajhg.2023.09.004.
Whole-exome sequencing of autism spectrum disorder (ASD) probands and unaffected family members has identified many genes harboring de novo variants suspected to play a causal role in the disorder. Of these, chromodomain helicase DNA-binding protein 8 (CHD8) is the most recurrently mutated. Despite the prevalence of CHD8 mutations, we have little insight into how CHD8 loss affects genome organization or the functional consequences of these molecular alterations in neurons. Here, we engineered two isogenic human embryonic stem cell lines with CHD8 loss-of-function mutations and characterized differences in differentiated human cortical neurons. We identified hundreds of genes with altered expression, including many involved in neural development and excitatory synaptic transmission. Field recordings and single-cell electrophysiology revealed a 3-fold decrease in firing rates and synaptic activity in CHD8 neurons, as well as a similar firing-rate deficit in primary cortical neurons from Chd8 mice. These alterations in neuron and synapse function can be reversed by CHD8 overexpression. Moreover, CHD8 neurons displayed a large increase in open chromatin across the genome, where the greatest change in compaction was near autism susceptibility candidate 2 (AUTS2), which encodes a transcriptional regulator implicated in ASD. Genes with changes in chromatin accessibility and expression in CHD8 neurons have significant overlap with genes mutated in probands for ASD, intellectual disability, and schizophrenia but not with genes mutated in healthy controls or other disease cohorts. Overall, this study characterizes key molecular alterations in genome structure and expression in CHD8 neurons and links these changes to impaired neuronal and synaptic function.
对自闭症谱系障碍(ASD)先证者和无相关家族成员进行全外显子组测序,已鉴定出许多携带新生变异的基因,这些变异被怀疑在该疾病中起因果作用。其中,染色质解旋酶 DNA 结合蛋白 8(CHD8)是突变最频繁的基因。尽管 CHD8 突变普遍存在,但我们对 CHD8 缺失如何影响基因组组织或这些分子改变在神经元中的功能后果知之甚少。在这里,我们构建了两个具有 CHD8 功能丧失突变的同源人类胚胎干细胞系,并对分化的人类皮质神经元中的差异进行了特征描述。我们鉴定出数百个表达改变的基因,包括许多涉及神经发育和兴奋性突触传递的基因。场记录和单细胞电生理学显示,CHD8 神经元的放电率和突触活性降低了 3 倍,Chd8 小鼠的皮质神经元也存在类似的放电率缺陷。这些神经元和突触功能的改变可以通过 CHD8 的过表达逆转。此外,CHD8 神经元的全基因组开放染色质增加,在靠近自闭症候选基因 2(AUTS2)的区域,紧凑性变化最大,AUTS2 编码一种与 ASD 相关的转录调节剂。在 CHD8 神经元中,染色质可及性和表达改变的基因与 ASD、智力障碍和精神分裂症先证者突变的基因有显著重叠,但与健康对照或其他疾病队列中突变的基因没有重叠。总的来说,这项研究描述了 CHD8 神经元中基因组结构和表达的关键分子改变,并将这些改变与神经元和突触功能受损联系起来。