Garcia Meilin Fernandez, Retallick-Townsley Kayla, Pruitt April, Davidson Elizabeth, Dai Yi, Fitzpatrick Sarah E, Sen Annabel, Cohen Sophie, Livoti Olivia, Khan Suha, Dossou Grace, Cheung Jen, Deans P J Michael, Wang Zuoheng, Huckins Laura, Hoffman Ellen, Brennand Kristen
Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511.
Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
bioRxiv. 2024 Aug 24:2024.08.23.609190. doi: 10.1101/2024.08.23.609190.
Over a hundred risk genes underlie risk for autism spectrum disorder (ASD) but the extent to which they converge on shared downstream targets to increase ASD risk is unknown. To test the hypothesis that cellular context impacts the nature of convergence, here we apply a pooled CRISPR approach to target 29 ASD loss-of-function genes in human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells, glutamatergic neurons, and GABAergic neurons. Two distinct approaches (gene-level and network-level analyses) demonstrate that convergence is greatest in mature glutamatergic neurons. Convergent effects are dynamic, varying in strength, composition, and biological role between cell types, increasing with functional similarity of the ASD genes examined, and driven by cell-type-specific gene co-expression patterns. Stratification of ASD genes yield targeted drug predictions capable of reversing gene-specific convergent signatures in human cells and ASD-related behaviors in zebrafish. Altogether, convergent networks downstream of ASD risk genes represent novel points of individualized therapeutic intervention.
超过一百个风险基因构成了自闭症谱系障碍(ASD)的发病风险,但它们在多大程度上汇聚于共同的下游靶点以增加ASD风险尚不清楚。为了检验细胞背景影响汇聚性质这一假设,我们在此应用一种混合CRISPR方法,以靶向人类诱导多能干细胞(hiPSC)衍生的神经祖细胞、谷氨酸能神经元和γ-氨基丁酸能神经元中的29个ASD功能丧失基因。两种不同的方法(基因水平和网络水平分析)表明,在成熟的谷氨酸能神经元中汇聚最为显著。汇聚效应是动态的,在不同细胞类型之间,其强度、组成和生物学作用各不相同,随着所检测的ASD基因功能相似性的增加而增强,并由细胞类型特异性基因共表达模式驱动。对ASD基因进行分层可产生有针对性的药物预测,这些预测能够逆转人类细胞中基因特异性的汇聚特征以及斑马鱼中与ASD相关的行为。总之,ASD风险基因下游的汇聚网络代表了个体化治疗干预的新靶点。