Suppr超能文献

采用快速 Sepsityper MALDI-TOF 质谱与机器学习相结合的方法从 flagged 血培养物中预测耐甲氧西林金黄色葡萄球菌和耐碳青霉烯类肺炎克雷伯菌。

Prediction of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Klebsiella pneumoniae from flagged blood cultures by combining rapid Sepsityper MALDI-TOF mass spectrometry with machine learning.

机构信息

AI Centre, China Medical University Hospital, Taichung, Taiwan.

Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.

出版信息

Int J Antimicrob Agents. 2023 Dec;62(6):106994. doi: 10.1016/j.ijantimicag.2023.106994. Epub 2023 Oct 4.

Abstract

This study investigated combination of the Rapid Sepsityper Kit and a machine learning (ML)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) approach for rapid prediction of methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Klebsiella pneumoniae (CRKP) from positive blood culture bottles. The study involved 461 patients with monomicrobial bloodstream infections. Species identification was performed using the conventional MALDI-TOF MS Biotyper system and the Rapid Sepsityper protocol. The data underwent preprocessing steps, and ML models were trained using preprocessed MALDI-TOF data and corresponding labels. The interpretability of the model was enhanced using SHapely Additive exPlanations values to identify significant features. In total, 44 S. aureus isolates comprising 406 MALDI-TOF MS files and 126 K. pneumoniae isolates comprising 1249 MALDI-TOF MS files were evaluated. This study demonstrated the feasibility of predicting MRSA among S. aureus and CRKP among K. pneumoniae isolates using MALDI-TOF MS and Sepsityper. Accuracy, area under the receiver operating characteristic curve, and F1 score for MRSA/methicillin-susceptible S. aureus were 0.875, 0.898 and 0.904, respectively; for CRKP/carbapenem-susceptible K. pneumoniae, these values were 0.766, 0.828 and 0.795, respectively. In conclusion, the novel ML-based MALDI-TOF MS approach enables rapid identification of MRSA and CRKP from flagged blood cultures within 1 h. This enables earlier initiation of targeted antimicrobial therapy, reducing deaths due to sepsis. The favourable performance and reduced turnaround time of this method suggest its potential as a rapid detection strategy in clinical microbiology laboratories, ultimately improving patient outcomes.

摘要

本研究旨在探讨快速 Sepsityper 试剂盒与基于机器学习(ML)的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)方法相结合,快速预测阳性血培养瓶中的耐甲氧西林金黄色葡萄球菌(MRSA)和耐碳青霉烯类肺炎克雷伯菌(CRKP)。该研究纳入了 461 例单一致病菌血流感染患者。使用常规 MALDI-TOF MS Biotyper 系统和 Rapid Sepsityper 方案进行种属鉴定。对数据进行预处理,使用预处理后的 MALDI-TOF 数据和相应的标签训练 ML 模型。使用 Shapely Additive exPlanations 值来增强模型的可解释性,以确定显著特征。共评估了 44 株金黄色葡萄球菌分离株,包括 406 个 MALDI-TOF MS 文件和 126 株肺炎克雷伯菌分离株,包括 1249 个 MALDI-TOF MS 文件。本研究表明,使用 MALDI-TOF MS 和 Sepsityper 可以预测金黄色葡萄球菌中的 MRSA 和肺炎克雷伯菌中的 CRKP。MRSA/甲氧西林敏感金黄色葡萄球菌的准确率、接受者操作特征曲线下面积和 F1 评分分别为 0.875、0.898 和 0.904;CRKP/碳青霉烯敏感肺炎克雷伯菌的准确率、接受者操作特征曲线下面积和 F1 评分分别为 0.766、0.828 和 0.795。总之,新型基于 ML 的 MALDI-TOF MS 方法能够在 1 小时内从标记的血培养物中快速识别 MRSA 和 CRKP,从而更早地开始靶向抗菌治疗,减少因败血症导致的死亡。该方法具有良好的性能和较短的周转时间,表明其在临床微生物学实验室中具有作为快速检测策略的潜力,最终改善患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验