Suppr超能文献

利用 MALDI-TOF MS 和机器学习从 20000 多个临床分离株中快速鉴定耐甲氧西林金黄色葡萄球菌。

Rapid Identification of Methicillin-Resistant Staphylococcus aureus Using MALDI-TOF MS and Machine Learning from over 20,000 Clinical Isolates.

机构信息

AI Innovation Center, China Medical University Hospital, Taichung City, Taiwan.

Department of Laboratory Medicine, China Medical University Hospital, Taichung City, Taiwan.

出版信息

Microbiol Spectr. 2022 Apr 27;10(2):e0048322. doi: 10.1128/spectrum.00483-22. Epub 2022 Mar 16.

Abstract

Rapidly identifying methicillin-resistant Staphylococcus aureus (MRSA) with high integration in the current workflow is critical in clinical practices. We proposed a matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based machine learning model for rapid MRSA prediction. The model was evaluated on a prospective test and four external clinical sites. For the data set comprising 20,359 clinical isolates, the area under the receiver operating curve of the classification model was 0.78 to 0.88. These results were further interpreted using shapely additive explanations and presented using the pseudogel method. The important MRSA feature, 6,590 to 6,599, was identified as a UPF0337 protein SACOL1680 with a lower binding affinity or no docking results compared with UPF0337 protein SA1452, which is mainly detected in methicillin-susceptible S. aureus. Our MALDI-TOF MS-based machine learning model for rapid MRSA identification can be easily integrated into the current clinical workflows and can further support physicians in prescribing proper antibiotic treatments. Over 20,000 clinical MSSA and MRSA isolates were collected to build a machine learning (ML) model to identify MSSA/MRSA and their markers. This model was tested across four external clinical sites to ensure the model's usability. We report the first discovery and validation of MRSA markers on the largest scale of clinical MSSA and MRSA isolates collected to date, covering five different clinical sites. Our developed approach for the rapid identification of MSSA and MRSA can be highly integrated into the current workflows.

摘要

快速识别高整合性耐甲氧西林金黄色葡萄球菌 (MRSA) 在临床实践中至关重要。我们提出了一种基于基质辅助激光解吸/电离飞行时间质谱 (MALDI-TOF MS) 的机器学习模型,用于快速预测 MRSA。该模型在前瞻性测试和四个外部临床地点进行了评估。对于包含 20,359 个临床分离株的数据集,分类模型的受试者工作特征曲线下面积为 0.78 至 0.88。这些结果进一步使用 Shapely 附加解释进行解释,并使用伪凝胶方法呈现。重要的 MRSA 特征为 6,590 至 6,599,鉴定为 UPF0337 蛋白 SACOL1680,与主要在甲氧西林敏感金黄色葡萄球菌中检测到的 UPF0337 蛋白 SA1452 相比,其结合亲和力较低或无对接结果。我们基于 MALDI-TOF MS 的快速 MRSA 识别机器学习模型可以轻松集成到当前的临床工作流程中,并进一步支持医生开具适当的抗生素治疗。我们收集了超过 20,000 个临床 MSSA 和 MRSA 分离株来构建机器学习 (ML) 模型,以识别 MSSA/MRSA 及其标志物。该模型在四个外部临床地点进行了测试,以确保模型的可用性。我们报告了迄今为止在最大规模的临床 MSSA 和 MRSA 分离株中首次发现和验证 MRSA 标志物,涵盖了五个不同的临床地点。我们开发的快速识别 MSSA 和 MRSA 的方法可以高度集成到当前的工作流程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fcc/9045122/442be96db31f/spectrum.00483-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验