揭示白藜芦醇、大豆苷元和鞣花酸代谢中的代谢型聚类:流行情况、相关肠道微生物组及其独特的微生物网络。

Unveiling metabotype clustering in resveratrol, daidzein, and ellagic acid metabolism: Prevalence, associated gut microbiomes, and their distinctive microbial networks.

机构信息

Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.

Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.

出版信息

Food Res Int. 2023 Nov;173(Pt 2):113470. doi: 10.1016/j.foodres.2023.113470. Epub 2023 Sep 11.

Abstract

The gut microbiota (GM) produces different polyphenol-derived metabolites, yielding high interindividual variability and hampering consistent health effects. GM metabotypes associated with ellagic acid (urolithin metabotypes A (UMA), B (UMB), and 0 (UM0)), resveratrol (lunularin -producers (LP) and non-producers (LNP)), and daidzein (equol-producers (EP) and non-producers (ENP)) are known. However, individual polyphenol-related metabotypes do not occur individually. In contrast, different combinations coexist (i.e., metabotype clusters, MCs). We report here for the first time these MCs, their distribution, and their associated GM in adult humans (n = 127) after consuming for 7 days a nutraceutical (pomegranate, Polygonum cuspidatum, and red clover extracts) containing ellagitannins + ellagic acid, resveratrol, and isoflavones. Urine metabolites (UHPLC-QTOF-MS) and fecal microbiota (16S rRNA sequencing) were analyzed. Ten MCs were identified: LP + UMB + ENP (22.7%), LP + UMA + ENP (21.3%), LP + UMA + EP (16.7%), LP + UMB + EP (16%), LNP + UMA + ENP (11.3%), LNP + UMB + ENP (5.3%), LNP + UMA + EP (3.3%), LNP + UMB + EP (2%), LNP + UM0 + EP (0.7%), and LNP + UM0 + ENP (0.7%). Sex, BMI, and age did not affect the distribution of metabotypes or MCs. Multivariate analysis (MaAslin2) revealed genera differentially present in individual metabotypes and MCs. Network analysis (MENA) showed the taxa acting as module hubs and connectors. Compositional and functional profiling, alpha and beta diversities, topological network features, and GM modulation by the nutraceutical differed depending on whether the entire cohort or each MC was considered. The nutraceutical did not change the composition of LP + UMA + EP (the most robust GM with the most associated functions) but increased its network connectors. This pioneering approach, joining GM's compositional, functional, and network features in polyphenol metabolism, paves the way for identifying personalized GM-targeted strategies to improve polyphenol health benefits.

摘要

肠道微生物群(GM)产生不同的多酚衍生代谢物,导致个体间的高度变异性,从而阻碍了一致的健康效果。已知与鞣花酸(鞣花酸代谢型 A(UMA)、B(UMB)和 0(UM0))、白藜芦醇(漆黄素-产生者(LP)和非产生者(LNP))和大豆苷元(大豆苷元-产生者(EP)和非产生者(ENP))相关的 GM 代谢型。然而,个体多酚相关代谢型不会单独出现。相反,不同的组合共存(即代谢型簇,MCs)。我们在这里首次报告了这些 MCs 的分布及其在成年人(n=127)中存在的 GM,这些成年人在 7 天内食用了含有鞣花单宁+鞣花酸、白藜芦醇和异黄酮的营养品(石榴、虎杖和红三叶草提取物)。分析了尿液代谢物(UHPLC-QTOF-MS)和粪便微生物群(16S rRNA 测序)。鉴定出 10 个 MCs:LP+UMB+ENP(22.7%)、LP+UMA+ENP(21.3%)、LP+UMA+EP(16.7%)、LP+UMB+EP(16%)、LNP+UMA+ENP(11.3%)、LNP+UMB+ENP(5.3%)、LNP+UMA+EP(3.3%)、LNP+UMB+EP(2%)、LNP+UM0+EP(0.7%)和 LNP+UM0+ENP(0.7%)。性别、BMI 和年龄并不影响代谢型或 MCs 的分布。多元分析(MaAslin2)显示了个体代谢型和 MCs 中存在的差异。网络分析(MENA)显示了作为模块枢纽和连接器的分类群。组成和功能分析、alpha 和 beta 多样性、拓扑网络特征以及营养品对 GM 的调节取决于整个队列或每个 MC 是否被考虑。营养品并没有改变 LP+UMA+EP 的组成(最具代表性的 GM,具有最多相关功能),但增加了其网络连接器。这种开创性的方法将 GM 的组成、功能和网络特征结合到多酚代谢中,为确定个性化的 GM 靶向策略以提高多酚的健康益处铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索