Suppr超能文献

利用多光谱信息融合估算小麦产量

Estimation of wheat crop production using multispectral information fusion.

作者信息

Pant Triloki

机构信息

Department of Information Technology, Indian Institute of Information Technology - Allahabad, Prayagraj, India.

出版信息

J Sci Food Agric. 2024 Jan 30;104(2):1074-1084. doi: 10.1002/jsfa.13030. Epub 2023 Nov 7.

Abstract

BACKGROUND

The present work estimates the area and corresponding wheat crop production in the study area, which comprises the Etah region of Uttar Pradesh, India. For this purpose, multispectral images of multiple sensors, namely Sentinel-2, Landsat-8 and Landsat-9 during the preharvest period, i.e. March for the years 2021 and 2022, were used. A multispectral information fusion approach was proposed, involving image classification as well as vegetation index-based information extraction. For imposing information fusion, appropriate image bands were identified with the help of separability analysis followed by land cover classification for wheat crop class extraction. Support vector machine (SVM), artificial neural network (ANN) and maximum likelihood (ML) were used for classification, whereas normalized difference vegetation index (NDVI) and fractional vegetation cover (FVC) were used for index-based crop area extraction.

RESULTS

A maximum accuracy of 98.34% was achieved for Sentinel-2 data using ANN, whereas a minimum accuracy of 80.21% was achieved for Landsat-9 using the ML classifier. The estimated area for Sentinel-2 data for the year 2021 was 260 540 ha using ANN and 203 240 ha using ML, which is close to the reference data, i.e. 238 600 ha. SVM also showed good performance and calculated least error in estimated crop area for the year 2022 on Sentinel-2 data. It calculated 8 408 490 tons of wheat for the same year.

CONCLUSION

The proposed method utilizes a single image per year for extraction of information supported by the ground truth data, which makes it a novel approach to information extraction for crop production monitoring. © 2023 Society of Chemical Industry.

摘要

背景

本研究对印度北方邦埃塔地区的小麦种植面积及相应产量进行了估算。为此,使用了多传感器的多光谱图像,即2021年和2022年收获前时期(3月)的哨兵 - 2号、陆地卫星8号和陆地卫星9号图像。提出了一种多光谱信息融合方法,包括图像分类以及基于植被指数的信息提取。为了进行信息融合,借助可分性分析确定了合适的图像波段,随后进行土地覆盖分类以提取小麦作物类别。支持向量机(SVM)、人工神经网络(ANN)和最大似然法(ML)用于分类,而归一化植被指数(NDVI)和植被覆盖度(FVC)用于基于指数的作物面积提取。

结果

使用ANN对哨兵 - 2号数据分类时,最高准确率达到98.34%;使用ML分类器对陆地卫星9号数据分类时,最低准确率为80.21%。2021年,使用ANN估算的哨兵 - 2号数据面积为260540公顷,使用ML估算的面积为203240公顷,接近参考数据238600公顷。SVM也表现良好,在2022年哨兵 - 2号数据估算作物面积时计算出的误差最小。同年,其计算出小麦产量为8408490吨。

结论

所提出的方法每年利用单幅图像提取信息,并得到了地面真值数据的支持,这使其成为一种用于作物产量监测的新型信息提取方法。© 2023化学工业协会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验