Suppr超能文献

利用深度学习从跨模态神经影像学合成 tau 病理学图像。

Synthesizing images of tau pathology from cross-modal neuroimaging using deep learning.

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.

Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea.

出版信息

Brain. 2024 Mar 1;147(3):980-995. doi: 10.1093/brain/awad346.

Abstract

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.

摘要

鉴于痴呆症的普遍存在和针对特定病理学的疾病修饰治疗方法的发展,采用高价值的生物标志物策略来为医疗决策提供信息至关重要。在体内 tau-PET 是一种理想的生物标志物,可用于阿尔茨海默病的诊断和治疗效果的衡量。然而,与其他神经影像学方法相比,tau-PET 目前患者还无法广泛获得。在这项研究中,我们提出了一种卷积神经网络(CNN)模型,该模型可以从更广泛的可用跨模态成像输入中推断 tau-PET 图像。纳入了 1192 名参与者的脑部 T1 加权磁共振成像(T1w)、氟脱氧葡萄糖(FDG)-PET、淀粉样蛋白-PET 和 tau-PET 数据。我们发现,CNN 模型可以非常准确地推断 tau-PET 图像,其中基于 FDG 的模型精度最高,其次是淀粉样蛋白-PET 和 T1w。在测试人工智能推断 tau-PET 的影响时,只有基于 FDG 的模型在分类 tau 阳性和诊断组方面的性能显著优于原始输入数据,这表明应用该模型可以增强代谢图像的实用性。可解释性实验表明,FDG 和 T1w 基于的模型利用了来自物理上距离较远的感兴趣区域的非局部输入来估计 tau-PET,但基于 Pittsburgh 化合物 B 的模型并非如此。这意味着该模型可以从淀粉样蛋白-PET 和 tau-PET 之间的关系中学习到 FDG-PET 和 T1w 与 tau-PET 之间的独特生物学关系。我们的研究表明,将人工智能扩展到神经影像学的应用,以预测特定蛋白质的病理学,具有为新兴护理模式提供信息的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18a/10907092/a39947d31e0f/awad346f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验