Suppr超能文献

有效调控花状δ-MnO纳米结构中的氧空位用于大容量和高速率锌离子存储

Effectively Modulating Oxygen Vacancies in Flower-Like δ-MnO Nanostructures for Large Capacity and High-Rate Zinc-Ion Storage.

作者信息

Wang Yiwei, Zhang Yuxiao, Gao Ge, Fan Yawen, Wang Ruoxin, Feng Jie, Yang Lina, Meng Alan, Zhao Jian, Li Zhenjiang

机构信息

College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China.

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China.

出版信息

Nanomicro Lett. 2023 Oct 7;15(1):219. doi: 10.1007/s40820-023-01194-3.

Abstract

In recent years, manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries (ZIBs) have attracted a great deal of attentions from numerous researchers. However, their slow reaction kinetics, limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation. To solve these problems, herein, we introduce abundant oxygen vacancies into the flower-like δ-MnO nanostructure and effectively modulate the vacancy defects to reach the optimal level (δ-MnO-2.0). The smart design intrinsically tunes the electronic structure, guarantees ion chemisorption-desorption equilibrium and increases the electroactive sites, which not only effectively accelerates charge transfer rate during reaction processes, but also endows more redox reactions, as verified by first-principle calculations. These merits can help the fabricated δ-MnO-2.0 cathode to present a large specific capacity of 551.8 mAh g at 0.5 A g, high-rate capability of 262.2 mAh g at 10 A g and an excellent cycle lifespan (83% of capacity retention after 1500 cycles), which is far superior to those of the other metal compound cathodes. In addition, the charge/discharge mechanism of the δ-MnO-2.0 cathode has also been elaborated through ex situ techniques. This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.

摘要

近年来,作为锌离子电池(ZIBs)一类先进的阴极材料,锰基氧化物吸引了众多研究人员的大量关注。然而,它们缓慢的反应动力学、有限的活性位点和较差的导电性不可避免地导致严重的性能退化。为了解决这些问题,在此我们将大量氧空位引入到花状δ-MnO纳米结构中,并有效地调节空位缺陷至最佳水平(δ-MnO-2.0)。这种巧妙的设计从本质上调整了电子结构,确保了离子化学吸附-解吸平衡并增加了电活性位点,这不仅在反应过程中有效地加速了电荷转移速率,还赋予了更多的氧化还原反应,这一点已通过第一性原理计算得到验证。这些优点有助于制备的δ-MnO-2.0阴极在0.5 A g下呈现551.8 mAh g的大比容量、在10 A g下具有262.2 mAh g的高倍率性能以及出色的循环寿命(1500次循环后容量保持率为83%),这远远优于其他金属化合物阴极。此外,还通过非原位技术阐述了δ-MnO-2.0阴极的充/放电机理。这项工作为构建下一代高性能ZIBs阴极材料开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3501/10560176/ecfaf6086476/40820_2023_1194_Sch1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验