Electronics and Communication Engineering Department, Meghnad Saha Institute of Technology, Kolkata, India.
Department of Basic Sciences & Humanities, Techno International New Town, Kolkata, India.
Comput Methods Biomech Biomed Engin. 2024 Oct;27(13):1906-1919. doi: 10.1080/10255842.2023.2265009. Epub 2023 Oct 9.
Arrhythmic heartbeat classification has gained a lot of attention to accelerate the detection of cardiovascular diseases and mitigating the potential cause of one-third of deaths worldwide. In this article, a computer-aided diagnostic (CAD) approach has been proposed for the automated identification and classification of arrhythmic heartbeats from electrocardiogram (ECG) signals using multiple features aided supervised learning model. For proper diagnosis of arrhythmic heartbeats, MIT-BIH Arrhythmia database has been used to train and test the proposed approach. The ECG signals, extracted from sensor leads, have undergone pre-processing discrete wavelet transform. Three sets of features, i.e. statistical, temporal, and spectral, are extracted from the processed ECG signals followed by random forest aided recursive feature elimination strategy to select the prominent features for proper classification of arrhythmic heartbeats by the proposed optimal extreme gradient boosting (O-XGBoost) classifier. Hyperparameters such as learning rate, tree-specific parameters, and regularization parameters have been optimized to improve the performance of the XGBoost classifier. Moreover, the synthetic minority over-sampling technique has been employed for balancing the dataset in order to improve the classification performance. Quantitative results reveal the remarkable performance over state-of-the-art methods. The proposed model can be implemented in any computer-aided diagnostic system with similar topological structures.
心律失常性心跳分类引起了广泛关注,以加速心血管疾病的检测并减轻全球三分之一死亡的潜在原因。本文提出了一种基于计算机辅助诊断 (CAD) 的方法,用于使用多种特征辅助监督学习模型从心电图 (ECG) 信号中自动识别和分类心律失常性心跳。为了正确诊断心律失常性心跳,使用了 MIT-BIH 心律失常数据库来训练和测试所提出的方法。从传感器导联中提取的 ECG 信号经过预处理离散小波变换。从处理后的 ECG 信号中提取了三组特征,即统计特征、时间特征和频谱特征,然后采用随机森林辅助递归特征消除策略从处理后的 ECG 信号中提取三组特征,选择突出特征,由提出的最优极端梯度提升 (O-XGBoost) 分类器对心律失常性心跳进行适当分类。优化了学习率、树特定参数和正则化参数等超参数,以提高 XGBoost 分类器的性能。此外,采用了合成少数过采样技术来平衡数据集,以提高分类性能。定量结果显示了优于最先进方法的显著性能。该模型可以在具有类似拓扑结构的任何计算机辅助诊断系统中实现。