Suppr超能文献

用于肘部骨折分类的知识引导多视图深度课程学习

Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification.

作者信息

Luo Jun, Kitamura Gene, Arefan Dooman, Doganay Emine, Panigrahy Ashok, Wu Shandong

机构信息

Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Mach Learn Med Imaging. 2021 Sep;12966:555-564. doi: 10.1007/978-3-030-87589-3_57. Epub 2021 Sep 21.

Abstract

Elbow fracture diagnosis often requires patients to take both frontal and lateral views of elbow X-ray radiographs. In this paper, we propose a multiview deep learning method for an elbow fracture subtype classification task. Our strategy leverages transfer learning by first training two single-view models, one for frontal view and the other for lateral view, and then transferring the weights to the corresponding layers in the proposed multiview network architecture. Meanwhile, quantitative medical knowledge was integrated into the training process through a curriculum learning framework, which enables the model to first learn from "easier" samples and then transition to "harder" samples to reach better performance. In addition, our multiview network can work both in a dual-view setting and with a single view as input. We evaluate our method through extensive experiments on a classification task of elbow fracture with a dataset of 1,964 images. Results show that our method outperforms two related methods on bone fracture study in multiple settings, and our technique is able to boost the performance of the compared methods. The code is available at https://github.com/ljaiverson/multiview-curriculum.

摘要

肘部骨折的诊断通常需要患者拍摄肘部X线片的正位和侧位片。在本文中,我们提出了一种用于肘部骨折亚型分类任务的多视图深度学习方法。我们的策略利用迁移学习,首先训练两个单视图模型,一个用于正位视图,另一个用于侧位视图,然后将权重转移到所提出的多视图网络架构的相应层。同时,通过课程学习框架将定量医学知识整合到训练过程中,这使得模型能够首先从“较容易”的样本中学习,然后过渡到“较难”的样本以达到更好的性能。此外,我们的多视图网络既可以在双视图设置下工作,也可以以单视图作为输入。我们通过对一个包含1964张图像的数据集进行肘部骨折分类任务的广泛实验来评估我们的方法。结果表明,我们的方法在多种设置下优于骨折研究中的两种相关方法,并且我们的技术能够提高比较方法的性能。代码可在https://github.com/ljaiverson/multiview-curriculum获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6f5/10557058/10da97561880/nihms-1933007-f0001.jpg

相似文献

2
Human Not in the Loop: Objective Sample Difficulty Measures for Curriculum Learning.人类不参与其中:课程学习的客观样本难度度量
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230597. Epub 2023 Sep 1.
4
Interpretable deep learning methods for multiview learning.多视图学习的可解释深度学习方法。
BMC Bioinformatics. 2024 Feb 14;25(1):69. doi: 10.1186/s12859-024-05679-9.
5
Continual Multiview Task Learning via Deep Matrix Factorization.通过深度矩阵分解实现连续多视图任务学习
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):139-150. doi: 10.1109/TNNLS.2020.2977497. Epub 2021 Jan 4.
7
Multitask Representation Learning With Multiview Graph Convolutional Networks.基于多视图图卷积网络的多任务表示学习
IEEE Trans Neural Netw Learn Syst. 2022 Mar;33(3):983-995. doi: 10.1109/TNNLS.2020.3036825. Epub 2022 Feb 28.
10
Flexible Multiview Spectral Clustering With Self-Adaptation.具有自适应能力的灵活多视图谱聚类
IEEE Trans Cybern. 2023 Apr;53(4):2586-2599. doi: 10.1109/TCYB.2021.3131749. Epub 2023 Mar 16.

本文引用的文献

4
Deep learning in fracture detection: a narrative review.深度学习在骨折检测中的应用:综述。
Acta Orthop. 2020 Apr;91(2):215-220. doi: 10.1080/17453674.2019.1711323. Epub 2020 Jan 13.
7
Elbow radiographic anatomy: measurement techniques and normative data.肘部 X 线解剖学:测量技术和正常值。
J Shoulder Elbow Surg. 2012 Sep;21(9):1236-46. doi: 10.1016/j.jse.2011.10.026. Epub 2012 Feb 12.
8
Imaging features of avulsion injuries.撕脱伤的影像学特征。
Radiographics. 1999 May-Jun;19(3):655-72. doi: 10.1148/radiographics.19.3.g99ma05655.
9
Acute and chronic avulsive injuries.急性和慢性撕脱伤。
Radiol Clin North Am. 1997 May;35(3):747-66.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验