Suppr超能文献

用于理解CRISPR/Cas9脱靶酶促反应的可解释神经架构搜索与迁移学习

Interpretable neural architecture search and transfer learning for understanding CRISPR/Cas9 off-target enzymatic reactions.

作者信息

Zhang Zijun, Lamson Adam R, Shelley Michael, Troyanskaya Olga

机构信息

Division of Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, 116 N. Robertson Blvd, Los Angeles, 90048, CA, USA.

Center for Computational Biology, Flatiron Institute, 162 5th Ave, New York City, 10010, NY, USA.

出版信息

ArXiv. 2023 Sep 29:arXiv:2305.11917v2.

Abstract

Finely-tuned enzymatic pathways control cellular processes, and their dysregulation can lead to disease. Creating predictive and interpretable models for these pathways is challenging because of the complexity of the pathways and of the cellular and genomic contexts. Here we introduce , a deep learning framework which addresses these challenges with data-driven and biophysically interpretable models for determining the kinetics of biochemical systems. First, it uses kinetic assays to rapidly hypothesize an ensemble of high-quality Kinetically Interpretable Neural Networks (KINNs) that predict reaction rates. It then employs a novel transfer learning step, where the KINNs are inserted as intermediary layers into deeper convolutional neural networks, fine-tuning the predictions for reaction-dependent outcomes. makes effective use of the limited, but clean data and the complex, yet plentiful data that captures cellular context. We apply to predict CRISPR-Cas9 off-target editing probabilities and demonstrate that achieves state-of-the-art performance, regularizes neural network architectures, and maintains physical interpretability.

摘要

精细调整的酶促途径控制着细胞过程,其失调会导致疾病。由于这些途径以及细胞和基因组背景的复杂性,为这些途径创建预测性和可解释性模型具有挑战性。在这里,我们介绍了一种深度学习框架,该框架通过数据驱动且具有生物物理可解释性的模型来应对这些挑战,以确定生化系统的动力学。首先,它使用动力学测定法快速假设一组高质量的动力学可解释神经网络(KINNs),这些网络可预测反应速率。然后,它采用了一个新颖的迁移学习步骤,即将KINNs作为中间层插入更深的卷积神经网络中,对反应相关结果的预测进行微调。该框架有效地利用了有限但干净的数据以及捕获细胞背景的复杂但丰富的数据。我们将该框架应用于预测CRISPR-Cas9脱靶编辑概率,并证明该框架实现了一流的性能,规范了神经网络架构,并保持了物理可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f50c/10557798/c29fec18326c/nihpp-2305.11917v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验