Suppr超能文献

利用微流控技术和单物镜倾斜光片进行三维全细胞多靶点单分子超分辨率成像。

Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet.

作者信息

Saliba Nahima, Gagliano Gabriella, Gustavsson Anna-Karin

机构信息

Department of Chemistry, Rice University, Houston, TX, 77005.

Smalley-Curl Institute, Rice University, Houston, TX, 77005.

出版信息

bioRxiv. 2024 Sep 16:2023.09.27.559876. doi: 10.1101/2023.09.27.559876.

Abstract

Multi-target single-molecule super-resolution fluorescence microscopy offers a powerful means of understanding the distributions and interplay between multiple subcellular structures at the nanoscale. However, single-molecule super-resolution imaging of whole mammalian cells is often hampered by high fluorescence background and slow acquisition speeds, especially when imaging multiple targets in 3D. In this work, we have mitigated these issues by developing a steerable, dithered, single-objective tilted light sheet for optical sectioning to reduce fluorescence background and a pipeline for 3D nanoprinting microfluidic systems for reflection of the light sheet into the sample. This easily adaptable novel microfluidic fabrication pipeline allows for the incorporation of reflective optics into microfluidic channels without disrupting efficient and automated solution exchange. By combining these innovations with point spread function engineering for nanoscale localization of individual molecules in 3D, deep learning for analysis of overlapping emitters, active 3D stabilization for drift correction and long-term imaging, and Exchange-PAINT for sequential multi-target imaging without chromatic offsets, we demonstrate whole-cell multi-target 3D single-molecule super-resolution imaging with improved precision and imaging speed.

摘要

多靶点单分子超分辨率荧光显微镜提供了一种在纳米尺度上理解多个亚细胞结构之间分布和相互作用的强大手段。然而,全哺乳动物细胞的单分子超分辨率成像常常受到高荧光背景和缓慢采集速度的阻碍,尤其是在对多个靶点进行三维成像时。在这项工作中,我们通过开发一种用于光学切片的可控、抖动、单物镜倾斜光片来减少荧光背景,以及一种用于将光片反射到样品中的三维纳米打印微流控系统的流程,缓解了这些问题。这种易于适应的新型微流控制造流程允许在不干扰高效和自动溶液交换的情况下,将反射光学元件集成到微流控通道中。通过将这些创新与用于三维中单个分子纳米级定位的点扩散函数工程、用于重叠发射体分析的深度学习、用于漂移校正和长期成像的有源三维稳定以及用于无色彩偏移的顺序多靶点成像的交换式点积累成像纳米技术相结合,我们展示了具有更高精度和成像速度的全细胞多靶点三维单分子超分辨率成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8388/11422909/e137560ad499/nihpp-2023.09.27.559876v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验