Suppr超能文献

微流控和单物镜倾斜光片的全细胞多靶点单分子超分辨三维成像。

Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet.

机构信息

Department of Chemistry, Rice University, Houston, TX, USA.

Smalley-Curl Institute, Rice University, Houston, TX, USA.

出版信息

Nat Commun. 2024 Nov 24;15(1):10187. doi: 10.1038/s41467-024-54609-z.

Abstract

Multi-target single-molecule super-resolution fluorescence microscopy offers a powerful means of understanding the distributions and interplay between multiple subcellular structures at the nanoscale. However, single-molecule super-resolution imaging of whole mammalian cells is often hampered by high fluorescence background and slow acquisition speeds, especially when imaging multiple targets in 3D. In this work, we have mitigated these issues by developing a steerable, dithered, single-objective tilted light sheet for optical sectioning to reduce fluorescence background and a pipeline for 3D nanoprinting microfluidic systems for reflection of the light sheet into the sample. This easily adaptable microfluidic fabrication pipeline allows for the incorporation of reflective optics into microfluidic channels without disrupting efficient and automated solution exchange. We combine these innovations with point spread function engineering for nanoscale localization of individual molecules in 3D, deep learning for analysis of overlapping emitters, active 3D stabilization for drift correction and long-term imaging, and Exchange-PAINT for sequential multi-target imaging without chromatic offsets. We then demonstrate that this platform, termed soTILT3D, enables whole-cell multi-target 3D single-molecule super-resolution imaging with improved precision and imaging speed.

摘要

多靶标单分子超分辨率荧光显微镜为理解纳米尺度上多个亚细胞结构的分布和相互作用提供了一种强大的手段。然而,对整个哺乳动物细胞进行单分子超分辨率成像通常会受到高荧光背景和缓慢采集速度的阻碍,特别是在 3D 中对多个靶标进行成像时。在这项工作中,我们通过开发可操纵的、抖动的、单目标倾斜光片进行光学切片来减轻这些问题,以降低荧光背景,并开发了用于反射光片进入样品的 3D 纳米印刷微流控系统的流水线。这种易于适应的微流控制造流水线允许将反射光学器件集成到微流道中,而不会破坏高效和自动化的溶液交换。我们将这些创新与点扩散函数工程相结合,用于在 3D 中对单个分子进行纳米级定位,与深度学习相结合用于分析重叠发射器,与主动 3D 稳定化相结合用于漂移校正和长期成像,以及与 Exchange-PAINT 相结合用于无色偏的顺序多靶标成像。然后,我们证明了这个名为 soTILT3D 的平台可以实现整个细胞的多靶标 3D 单分子超分辨率成像,具有更高的精度和成像速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e8/11586421/bb5b8f800d9a/41467_2024_54609_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验