Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, Canada.
Department of Chemistry, Rice University, Houston, TX, United States.
Methods Cell Biol. 2023;176:59-83. doi: 10.1016/bs.mcb.2023.01.003. Epub 2023 Feb 24.
The primary cilium is an important signaling organelle critical for normal development and tissue homeostasis. Its small dimensions and complexity necessitate advanced imaging approaches to uncover the molecular mechanisms behind its function. Here, we outline how single-molecule fluorescence microscopy can be used for tracking molecular dynamics and interactions and for super-resolution imaging of nanoscale structures in the primary cilium. Specifically, we describe in detail how to capture and quantify the 2D dynamics of individual transmembrane proteins PTCH1 and SMO and how to map the 3D nanoscale distributions of the inversin compartment proteins INVS, ANKS6, and NPHP3. This protocol can, with minor modifications, be adapted for studies of other proteins and cell lines to further elucidate the structure and function of the primary cilium at the molecular level.
纤毛是一个重要的信号细胞器,对于正常发育和组织稳态至关重要。其微小的尺寸和复杂性需要先进的成像方法来揭示其功能背后的分子机制。在这里,我们概述了单分子荧光显微镜如何用于跟踪分子动力学和相互作用,并对初级纤毛中的纳米级结构进行超分辨率成像。具体来说,我们详细描述了如何捕获和量化单个跨膜蛋白 PTCH1 和 SMO 的 2D 动力学,以及如何绘制反向蛋白 INVS、ANKs6 和 NPHP3 等反转录因子隔室蛋白的 3D 纳米级分布。该方案可以进行微小的修改,以适应其他蛋白质和细胞系的研究,从而在分子水平上进一步阐明初级纤毛的结构和功能。