Suppr超能文献

Slow-like electrostimulation switches on slow myosin in denervated fast muscle.

作者信息

Carraro U, Catani C, Belluco S, Cantini M, Marchioro L

出版信息

Exp Neurol. 1986 Dec;94(3):537-53. doi: 10.1016/0014-4886(86)90236-0.

Abstract

Adult fast and slow skeletal muscles are composed of a large number of fibers with different physiological and biochemical properties that under neuronal control can respond in a plastic manner to a variety of stimuli. Although muscle cells synthesize muscle-specific contractile proteins in the absence of motoneurons, after innervation the neuron controls the particular set of isoforms subsequently synthesized. However, agreement has not been reached on the mechanism, either chemotrophic or impulse-mediated, by which the nerve influences gene expression in the muscle. Here we report the effect on isomyosins of continuous, low-frequency (a protocol mimicking the discharge pattern of the slow motoneuron) direct electrical stimulation of a permanently denervated fast muscle, the extensor digitorum longus of adult rat. After several weeks, unlike sham-stimulated muscle, the stimulated muscle showed a dramatic increase of the slow myosin light and heavy chains. Myosin light chains were identified by two-dimensional gel electrophoresis. The slow myosin heavy chain was clearly distinguished from fast and embryonic types by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and orthogonal peptide mapping. The myosin change could be restricted to a portion of the muscle by the position of the stimulating electrodes. Taking into account the morphologic appearance of the electrostimulated muscle and the large body of evidence demonstrating the absolute dependence of slow myosin on specific innervation, our observations indicate that at least the slow motoneuron influences the isomyosin genes' expression by the kind of activity it imposes on developing muscle fibers.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验