Jones Robert S, Leung Christian, Chang Jae H, Brown Suzanne, Liu Ning, Yan Zhengyin, Kenny Jane R, Broccatelli Fabio
Genentech, Inc, United States
Genentech, United States.
Drug Metab Dispos. 2022 May 30;50(8):DMD-AR-2021-000784. doi: 10.1124/dmd.121.000784.
The utilization of in vitro data to predict drug pharmacokinetics (PK) in vivo has been a consistent practice in early drug discovery for decades. However, its success is hampered by mispredictions attributed to uncharacterized biological phenomena/experimental artifacts. Predicted drug clearance (CL) from experimental data (i.e. hepatocyte intrinsic clearance: CL, fraction unbound in plasma: f) is often systematically underpredicted using the well-stirred model (WSM). The objective of this study was to evaluate using empirical scalars in the WSM to correct for CL mispredictions. Drugs (N=28) were used to generate numerical scalars on CL (α), and f (β) to minimize the error (AAFE) for CL predictions. These scalars were validated using an additional dataset (N=28 drugs) and applied to a non-redundant AstraZeneca (AZ) dataset available in the literature (N=117 drugs) for a total of 173 compounds. CL predictions using the WSM were improved for most compounds using an α value of 3.66 (64%<2-fold) compared to no scaling (46%<2-fold). Similarly, using a β value of 0.55 or combination of α and β scalars (values of 1.74 and 0.66, respectively) resulted in a similar improvement in predictions (~64%<2-fold and ~65%<2-fold, respectively). For highly bound compounds (f{less than or equal to}0.01), AAFE was substantially reduced across all scaling methods. Using the β scalar alone or a combination of α and β appeared optimal; and produce larger magnitude corrections for highly-bound compounds. Some drugs are still disproportionally mispredicted, however the improvements in prediction error and simplicity of applying these scalars suggests its utility for early-stage CL predictions. In early drug discovery, prediction of human clearance using in vitro experimental data plays an essential role in triaging compounds prior to in vivo studies. These predictions have been systematically underestimated. Here we introduce empirical scalars calibrated on the extent of plasma protein binding that appear to improve clearance prediction across multiple datasets. This approach can be used in early phases of drug discovery prior to the availability of pre-clinical data for early quantitative predictions of human clearance.
几十年来,利用体外数据预测药物体内药代动力学(PK)一直是早期药物发现中的一贯做法。然而,由于未表征的生物学现象/实验假象导致的错误预测阻碍了其成功。使用稳态模型(WSM)从实验数据(即肝细胞固有清除率:CL,血浆中未结合分数:f)预测的药物清除率(CL)往往系统性地被低估。本研究的目的是评估在WSM中使用经验标量来校正CL预测的错误。使用28种药物生成CL(α)和f(β)的数值标量,以最小化CL预测的误差(平均绝对预测误差,AAFE)。使用另外一个数据集(28种药物)对这些标量进行验证,并将其应用于文献中可用的非冗余阿斯利康(AZ)数据集(117种药物),总共173种化合物。与不进行标度(约46%<2倍)相比,使用α值为3.66时,大多数化合物使用WSM进行的CL预测得到了改善(约64%<2倍)。同样,使用β值为0.55或α和β标量的组合(分别为1.74和0.66)导致预测有类似的改善(分别约为64%<2倍和约65%<2倍)。对于高结合化合物(f≤0.01),在所有标度方法中AAFE都大幅降低。单独使用β标量或α和β的组合似乎是最佳的;并且对高结合化合物产生更大幅度的校正。然而,一些药物仍然被不成比例地错误预测,但是预测误差的改善以及应用这些标量的简便性表明了其在早期CL预测中的实用性。在早期药物发现中,使用体外实验数据预测人体清除率在体内研究之前对化合物进行筛选中起着至关重要的作用。这些预测一直被系统性地低估。在此,我们引入了根据血浆蛋白结合程度校准的经验标量,这些标量似乎能改善多个数据集的清除率预测。这种方法可在药物发现的早期阶段使用,在临床前数据可用之前用于早期定量预测人体清除率。