Suppr超能文献

用于预测高血压老年患者轻度认知障碍的列线图。

A nomogram for predicting mild cognitive impairment in older adults with hypertension.

机构信息

Nursing Department, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Yinchuan, China.

Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.

出版信息

BMC Neurol. 2023 Oct 9;23(1):363. doi: 10.1186/s12883-023-03408-y.

Abstract

BACKGROUND

Hyper- and hypotension increase the risk of cognitive dysfunction. As effective control of blood pressure can reduce the risk of mild cognitive impairment (MCI), early risk assessment is necessary to identify MCI in senile hypertension as soon as possible and reduce the risk of developing dementia. No perfect risk-prediction model or nomogram has been developed to evaluate the risk of MCI in older adults with hypertension. We aimed to develop a nomogram model for predicting MCI in older patients with hypertension.

METHODS

We selected 345 older patients with hypertension in Xixiangtang District, Nanning City, as the modeling group and divided into the MCI (n = 197) and non-MCI groups (n = 148). Comparing the general conditions, lifestyle, disease factors, psychosocial and other indicators. Logistic regression was used to analyze risk factors for MCI in older hypertensive patients, and R Programming Language was used to draw the nomogram. We selected 146 older patients with hypertension in Qingxiu District, Nanning City, as the verification group. The effectiveness and discrimination ability of the nomogram was evaluated through internal and external verification.

RESULTS

Multivariate logistic regression analysis identified 11 factors, including hypertension grade, education level, complicated diabetes, hypertension years, stress history, smoking, physical exercise, reading, social support, sleep disorders, and medication compliance, as risk factors for MCI in older patients with hypertension. To develop a nomogram model, the validity of the prediction model was evaluated by fitting the curve, which revealed a good fit for both the modeling (P = 0.98) and verification groups (P = 0.96). The discrimination of the nomogram model was evaluated in the modeling group using a receiver operating characteristic curve. The area under the curve was 0.795, and the Hosmer-Lemeshow test yielded P = 0.703. In the validation group, the area under the curve was 0.765, and the Hosmer-Lemeshow test yielded P = 0.234.

CONCLUSIONS

We developed a nomogram to help clinicians identify high-risk groups for MCI among older patients with hypertension. This model demonstrated good discrimination and validity, providing a scientific basis for community medical staff to evaluate and identify the risk of MCI in these patients at an early stage.

摘要

背景

高血压和低血压都会增加认知功能障碍的风险。由于有效控制血压可以降低轻度认知障碍(MCI)的风险,因此有必要尽早对老年高血压患者进行风险评估,以尽早识别 MCI,并降低痴呆的风险。目前还没有完美的风险预测模型或诺模图来评估老年高血压患者发生 MCI 的风险。本研究旨在建立一个预测老年高血压患者 MCI 的诺模图模型。

方法

本研究选取南宁市西乡塘区 345 例老年高血压患者作为建模组,根据是否患有 MCI 分为 MCI 组(n=197)和非 MCI 组(n=148)。比较两组患者的一般情况、生活方式、疾病因素、心理社会等指标。采用 Logistic 回归分析老年高血压患者 MCI 的危险因素,应用 R 语言绘制诺模图。选择南宁市青秀区 146 例老年高血压患者作为验证组,通过内部和外部验证评估该诺模图的有效性和区分能力。

结果

多因素 Logistic 回归分析确定了 11 个因素,包括高血压分级、教育程度、合并糖尿病、高血压病程、压力史、吸烟、体育锻炼、阅读、社会支持、睡眠障碍和药物依从性,是老年高血压患者 MCI 的危险因素。通过拟合曲线来开发预测模型,结果表明,模型在建模组(P=0.98)和验证组(P=0.96)中均具有良好的拟合度。在建模组中,采用受试者工作特征曲线评估诺模图模型的区分度,曲线下面积为 0.795,Hosmer-Lemeshow 检验 P=0.703。在验证组中,曲线下面积为 0.765,Hosmer-Lemeshow 检验 P=0.234。

结论

本研究构建了一个有助于临床医生识别老年高血压患者 MCI 高危人群的诺模图。该模型具有良好的区分度和有效性,为社区医务人员提供了科学依据,使其能够早期评估和识别这些患者发生 MCI 的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9534/10561469/908d4d16e94c/12883_2023_3408_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验