College of Forestry, Wildlife and Environment, Auburn University, Auburn, Alabama, USA.
School of Geography Science, Nanjing Normal University, Nanjing, China.
Glob Chang Biol. 2023 Dec;29(24):7145-7158. doi: 10.1111/gcb.16976. Epub 2023 Oct 10.
Human-induced nitrogen-phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio. Our study used a data-model integration framework to evaluate N and P dynamics and the potential for long-term accumulation or release of internal soil nutrient legacy stores to alter the ratio of N and P transported down the rivers. We show that the longer residence time of P in terrestrial ecosystems results in a much slower release of P to coastal oceans than N. If contemporary nutrient sources were reduced or suspended, P loading sustained by soil legacy P would decrease much slower than that of N, causing a decrease in the N and P loading ratio. The longer residence time of P in terrestrial ecosystems and the increasingly important role of soil legacy nutrients as a loading source may explain the decreasing N:P loading ratio in the Mississippi River Basin. Our study underscores a promising prospect for N loading control and the urgency to integrate soil P legacy into sustainable nutrient management strategies for aquatic ecosystem health and water security.
人类活动引起的陆地生态系统氮磷(N、P)失衡会导致过多的 N 和 P 负荷到水生生态系统,进而改变河口和沿海海洋的元素比例,并影响水生生态系统的结构和功能。在 20 世纪 80 年代后期之前,由于化肥中 N 肥的使用增加,而 P 肥的使用减少,密西西比河流域向墨西哥湾输入的养分中 N:P 比例增加,此后,尽管化肥中 N:P 比例没有表现出类似的趋势,但 N:P 负荷比例开始下降。在这里,我们假设土壤残留养分的不同释放率可能是导致 N:P 负荷比例下降的原因。我们的研究使用了数据模型综合框架来评估 N 和 P 的动态以及内部土壤养分残留长期积累或释放的潜力,以改变河流中运输的 N 和 P 的比例。我们表明,P 在陆地生态系统中的停留时间较长,导致 P 向沿海海洋的释放速度比 N 慢得多。如果当代养分源减少或暂停,土壤残留 P 支撑的 P 负荷将比 N 减少得慢得多,从而导致 N:P 负荷比例下降。P 在陆地生态系统中的停留时间较长,以及土壤残留养分作为负荷源的作用越来越重要,这可能解释了密西西比河流域 N:P 负荷比例下降的原因。我们的研究强调了控制 N 负荷的前景,并迫切需要将土壤 P 残留纳入水生生态系统健康和水安全的可持续养分管理策略中。