Zhan Wei, Gao Yedong, Zhang Haoran, Tian Yu, Zou Yanan, Li Xiang, Sun Huihang, Li Lipin, Jin Yaruo, Cao Jiaxin, Liu Yiming, Ren Nanqi
State Key Laboratory of Urban-rural Water Resource & Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
China Construction Power and Environment Engineering Co., Ltd., Nanjing, 210012, China.
Environ Sci Ecotechnol. 2025 May 9;26:100569. doi: 10.1016/j.ese.2025.100569. eCollection 2025 Jul.
Legacy phosphorus, accumulated from past anthropogenic activities, poses persistent and complex threats to global water quality. Despite extensive efforts to control phosphorus inputs, legacy phosphorus can persist for decades and undermine restoration goals. Emerging evidence suggests that shifts in regional development patterns profoundly reshape the dynamics and environmental risks of legacy phosphorus accumulation and mobilization. However, the mechanisms by which development pattern shifts reshape legacy phosphorus trajectories remain poorly understood. Here we show the complex pathways linking development-driven land-use changes, biogeochemical buffering capacities, and legacy phosphorus mobilization through an integrative modeling framework that couples developmental shift coefficients, anthropogenic phosphorus inventories, and riverine time-lag modeling to diagnose and predict long-term legacy phosphorus risks. Using the Songhua River as a case study, our results reveal that shifts from industrial to agricultural dominance significantly amplify legacy phosphorus accumulation by 86 times. Consequently, legacy phosphorus accounts for 65.4 %-69.9 %, surpassing current-year inputs and becoming the primary driver of riverine pollution. Furthermore, we demonstrate that development shifts systematically alter the dominant controlling factors, from fossil fuel emissions and drainage infrastructure to soil retention characteristics and agricultural practices, reshaping mitigation priorities. Our framework provides a generalizable methodology for quantifying legacy phosphorus risks under dynamic development patterns, offering immediate applications for water quality management. More broadly, this framework offers critical insights that can guide sustainable management strategies for linking evolving regional development patterns with long-term ecological restoration.
过去人为活动积累的遗留磷对全球水质构成了持续而复杂的威胁。尽管人们为控制磷输入付出了巨大努力,但遗留磷仍可能持续数十年,并破坏恢复目标。新出现的证据表明,区域发展模式的转变深刻地重塑了遗留磷积累和迁移的动态过程及环境风险。然而,发展模式转变如何重塑遗留磷轨迹的机制仍知之甚少。在此,我们通过一个综合建模框架展示了将发展驱动的土地利用变化、生物地球化学缓冲能力和遗留磷迁移联系起来的复杂路径,该框架结合了发展转变系数、人为磷存量和河流时间滞后模型,以诊断和预测长期遗留磷风险。以松花江为例,我们的结果表明,从工业主导向农业主导的转变显著放大了遗留磷积累86倍。因此,遗留磷占65.4%-69.9%,超过当年输入量,成为河流污染的主要驱动因素。此外,我们证明发展转变系统地改变了主导控制因素,从化石燃料排放和排水基础设施到土壤保持特性和农业实践,重塑了缓解优先事项。我们的框架提供了一种可推广的方法,用于量化动态发展模式下的遗留磷风险,为水质管理提供了即时应用。更广泛地说,该框架提供了关键见解,可指导将不断演变的区域发展模式与长期生态恢复联系起来的可持续管理战略。