Suppr超能文献

基于放射组学数据和机器学习方法预测急性缺血性脑卒中患者复发性缺血性脑卒中的多中心、大样本、前瞻性观察队列研究方案在中国。

Prediction of recurrent ischaemic stroke using radiomics data and machine learning methods in patients with acute ischaemic stroke: protocol for a multicentre, large sample, prospective observational cohort study in China.

机构信息

Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.

Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China.

出版信息

BMJ Open. 2023 Oct 10;13(10):e076406. doi: 10.1136/bmjopen-2023-076406.

Abstract

INTRODUCTION

Stroke is a leading cause of mortality and disability worldwide. Recurrent strokes result in prolonged hospitalisation and worsened functional outcomes compared with the initial stroke. Thus, it is critical to identify patients who are at high risk of stroke recurrence. This study is positioned to develop and validate a prediction model using radiomics data and machine learning methods to identify the risk of stroke recurrence in patients with acute ischaemic stroke (AIS).

METHODS AND ANALYSIS

A total of 1957 patients with AIS will be needed. Enrolment at participating hospitals will continue until the required sample size is reached, and we will recruit as many participants as possible. Multiple indicators including basic clinical data, image data, laboratory data, CYP2C19 genotype and follow-up data will be assessed at various time points during the registry, including baseline, 24 hours, 7 days, 1 month, 3 months, 6 months, 9 months and 12 months. The primary outcome was stroke recurrence. The secondary outcomes were death events, prognosis scores and adverse events. Imaging images were processed using deep learning algorithms to construct a programme capable of automatically labelling the lesion area and extracting radiomics features. The machine learning algorithms will be applied to integrate cross-scale, multidimensional data for exploratory analysis. Then, an ischaemic stroke recurrence prediction model of the best performance for patients with AIS will be established. Calibration, receiver operating characteristic and decision curve analyses will be evaluated.

ETHICS AND DISSEMINATION

This study has received ethical approval from the Medical Ethics Committee of the Second Affiliated Hospital of Nanchang University (medical research review No.34/2021), and informed consent will be obtained voluntarily. The research findings will be disseminated through publication in journals and presented at conferences.

TRIAL REGISTRATION NUMBER

ChiCTR2200055209.

摘要

简介

中风是全球范围内导致死亡和残疾的主要原因。与初次中风相比,复发性中风会导致住院时间延长和功能预后恶化。因此,识别中风复发风险较高的患者至关重要。本研究旨在利用影像组学数据和机器学习方法开发和验证预测模型,以识别急性缺血性中风(AIS)患者中风复发的风险。

方法和分析

总共需要 1957 名 AIS 患者。将在参与医院继续招募患者,直到达到所需的样本量,并尽可能多地招募参与者。在注册期间的多个时间点,包括基线、24 小时、7 天、1 个月、3 个月、6 个月、9 个月和 12 个月,将评估包括基本临床数据、影像数据、实验室数据、CYP2C19 基因型和随访数据在内的多个指标。主要结局是中风复发。次要结局是死亡事件、预后评分和不良事件。使用深度学习算法处理影像图像,构建一个能够自动标记病变区域并提取影像组学特征的程序。将应用机器学习算法来整合跨尺度、多维数据进行探索性分析。然后,将为 AIS 患者建立表现最佳的缺血性中风复发预测模型。将评估校准、接受者操作特征和决策曲线分析。

伦理和传播

本研究已获得南昌大学第二附属医院医学伦理委员会的伦理批准(医学研究审查第 34/2021 号),并将自愿获得知情同意。研究结果将通过在期刊上发表和在会议上展示来传播。

临床试验注册号

ChiCTR2200055209。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a34/10565242/1ac4cdb04f2e/bmjopen-2023-076406f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验