Suppr超能文献

ICI 性肺炎风险预测研究中的常见方法学陷阱。

Common methodological pitfalls in ICI pneumonitis risk prediction studies.

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.

Department of Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.

出版信息

Front Immunol. 2023 Sep 25;14:1228812. doi: 10.3389/fimmu.2023.1228812. eCollection 2023.

Abstract

BACKGROUND

Pneumonitis is one of the most common adverse events induced by the use of immune checkpoint inhibitors (ICI), accounting for a 20% of all ICI-associated deaths. Despite numerous efforts to identify risk factors and develop predictive models, there is no clinically deployed risk prediction model for patient risk stratification or for guiding subsequent monitoring. We believe this is due to systemic suboptimal approaches in study designs and methodologies in the literature. The nature and prevalence of different methodological approaches has not been thoroughly examined in prior systematic reviews.

METHODS

The PubMed, medRxiv and bioRxiv databases were used to identify studies that aimed at risk factor discovery and/or risk prediction model development for ICI-induced pneumonitis (ICI pneumonitis). Studies were then analysed to identify common methodological pitfalls and their contribution to the risk of bias, assessed using the QUIPS and PROBAST tools.

RESULTS

There were 51 manuscripts eligible for the review, with Japan-based studies over-represented, being nearly half (24/51) of all papers considered. Only 2/51 studies had a low risk of bias overall. Common bias-inducing practices included unclear diagnostic method or potential misdiagnosis, lack of multiple testing correction, the use of univariate analysis for selecting features for multivariable analysis, discretization of continuous variables, and inappropriate handling of missing values. Results from the risk model development studies were also likely to have been overoptimistic due to lack of holdout sets.

CONCLUSIONS

Studies with low risk of bias in their methodology are lacking in the existing literature. High-quality risk factor identification and risk model development studies are urgently required by the community to give the best chance of them progressing into a clinically deployable risk prediction model. Recommendations and alternative approaches for reducing the risk of bias were also discussed to guide future studies.

摘要

背景

肺炎是免疫检查点抑制剂(ICI)使用中最常见的不良反应之一,占所有与 ICI 相关死亡的 20%。尽管已经做出了许多努力来确定风险因素并开发预测模型,但目前还没有用于患者风险分层或指导后续监测的临床部署风险预测模型。我们认为,这是由于文献中研究设计和方法学方面存在系统性的不完美方法。之前的系统评价中没有彻底检查过不同方法学方法的性质和普遍性。

方法

使用 PubMed、medRxiv 和 bioRxiv 数据库来确定旨在发现 ICI 诱导性肺炎(ICI 肺炎)的风险因素和/或开发风险预测模型的研究。然后分析这些研究以确定常见的方法学陷阱及其对偏倚风险的贡献,使用 QUIPS 和 PROBAST 工具进行评估。

结果

共有 51 篇符合条件的综述文章,其中日本的研究占比过高,几乎占所有文章的一半(51 篇中有 24 篇)。只有 2/51 的研究总体上具有低偏倚风险。常见的产生偏差的做法包括诊断方法不明确或可能误诊、缺乏多次检验校正、使用单变量分析为多变量分析选择特征、连续变量的离散化以及对缺失值的不当处理。由于缺乏保留集,风险模型开发研究的结果也可能过于乐观。

结论

现有文献中缺乏方法学上低偏倚风险的研究。社区迫切需要高质量的风险因素识别和风险模型开发研究,以使它们最有可能成为一种可临床应用的风险预测模型。还讨论了减少偏差风险的建议和替代方法,以指导未来的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a2/10560723/4ad64b72158e/fimmu-14-1228812-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验