Suppr超能文献

细菌和古菌中不同受体的胺识别结构域从通用氨基酸传感器进化而来。

Amine-recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor.

机构信息

Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2305837120. doi: 10.1073/pnas.2305837120. Epub 2023 Oct 11.

Abstract

Bacteria possess various receptors that sense different signals and transmit information to enable an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Signals recognized by sensor domains are poorly reflected in overall sequence identity, and therefore, the identification of signals from the amino acid sequence of the sensor alone presents a challenge. Biogenic amines are of great physiological importance for microorganisms and humans. They serve as substrates for aerobic and anaerobic growth and play a role of neurotransmitters and osmoprotectants. Here, we report the identification of a sequence motif that is specific for amine-sensing sensor domains that belong to the Cache superfamily of the most abundant extracellular sensors in prokaryotes. We identified approximately 13,000 sensor histidine kinases, chemoreceptors, receptors involved in second messenger homeostasis and Ser/Thr phosphatases from 8,000 bacterial and archaeal species that contain the amine-recognizing motif. The screening of compound libraries and microcalorimetric titrations of selected sensor domains confirmed their ability to specifically bind biogenic amines. Mutants in the amine-binding motif or domains that contain a single mismatch in the binding motif had either no or a largely reduced affinity for amines. We demonstrate that the amine-recognizing domain originated from the universal amino acid-sensing Cache domain, thus providing insight into receptor evolution. Our approach enables precise "wet"-lab experiments to define the function of regulatory systems and therefore holds a strong promise to enable the identification of signals stimulating numerous receptors.

摘要

细菌拥有各种受体,可以感知不同的信号并传递信息,从而实现对环境的最佳适应。微生物学的一个主要局限是缺乏关于激活受体的信号分子的信息。被传感器结构域识别的信号在整体序列同一性中反映较差,因此,仅从传感器的氨基酸序列识别信号是一个挑战。生物胺对微生物和人类具有重要的生理意义。它们是需氧和厌氧生长的底物,并作为神经递质和渗透保护剂发挥作用。在这里,我们报告了一种序列基序的鉴定,该基序专门用于属于细菌中最丰富的细胞外传感器 Cache 超家族的胺感应传感器结构域。我们从包含胺识别基序的 8000 种细菌和古细菌物种中鉴定了大约 13000 种传感器组氨酸激酶、化学感受器、参与第二信使动态平衡的受体和 Ser/Thr 磷酸酶。对化合物文库的筛选和选定传感器结构域的微量热滴定证实了它们特异性结合生物胺的能力。在胺结合基序中的突变体或在结合基序中仅包含单个错配的结构域对胺没有或几乎没有亲和力。我们证明,胺识别结构域源自通用的氨基酸感应 Cache 结构域,从而深入了解了受体的进化。我们的方法能够精确地进行“湿”实验室实验,以定义调节系统的功能,因此有望能够识别刺激众多受体的信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efa/10589655/4852243721a9/pnas.2305837120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验