Monteagudo-Cascales Elizabet, Gavira José A, Xing Jiawei, Velando Félix, Matilla Miguel A, Zhulin Igor B, Krell Tino
Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.
Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra-Consejo Superior de Investigaciones Científicas, Armilla 18100, Spain.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2409881122. doi: 10.1073/pnas.2409881122. Epub 2025 Jan 29.
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans. They form the predominant family of extracytosolic bacterial LBDs and were identified in all major receptor types. Cache domains are composed of either a single (sCache) or a double (dCache) structural module. The functional relevance of bimodular LBDs remains poorly understood. Here, we identify the PacF chemoreceptor in the phytopathogen that recognizes formate at the membrane-distal module of its dCache domain, triggering chemoattraction. We further demonstrate that a family of formate-specific sCache domains has evolved from a dCache domain, exemplified by PacF, by losing the membrane-proximal module. By solving high-resolution structures of two family members in complex with formate, we show that the molecular basis for formate binding at sCache and dCache domains is highly similar, despite their low sequence identity. The apparent loss of the membrane-proximal module may be related to the observation that dCache domains bind ligands typically at the membrane-distal module, whereas studies have failed to find ligands bound in the membrane-proximal module. This work advances our understanding of signal sensing in bacterial receptors and suggests that evolution by reducing complexity may be a route for shaping diversity.
细菌受体可接入多种信号转导途径,这些途径调控着包括基因表达、第二信使水平和运动性在内的多种细胞过程。受体通常通过信号与配体结合结构域(LBD)结合而被激活。缓存结构域是在细菌、古菌和真核生物(包括人类)中普遍存在的LBD。它们构成了胞外细菌LBD的主要家族,并在所有主要受体类型中都有发现。缓存结构域由单个(sCache)或双个(dCache)结构模块组成。双模块LBD的功能相关性仍知之甚少。在这里,我们在植物病原体中鉴定出PacF化学感受器,它在其dCache结构域的膜远端模块识别甲酸,触发趋化作用。我们进一步证明,一个甲酸特异性sCache结构域家族是从以PacF为代表的dCache结构域进化而来的,进化方式是失去膜近端模块。通过解析两个家族成员与甲酸复合物的高分辨率结构,我们表明,尽管sCache和dCache结构域的序列同一性较低,但甲酸在这两个结构域上结合的分子基础高度相似。膜近端模块的明显缺失可能与以下观察结果有关:dCache结构域通常在膜远端模块结合配体,而研究未能在膜近端模块中发现结合的配体。这项工作推进了我们对细菌受体信号感知的理解,并表明通过降低复杂性进行进化可能是塑造多样性的一条途径。