Suppr超能文献

连续培养中瘤胃细菌的产热及其与维持能量的关系。

Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy.

作者信息

Russell J B

出版信息

J Bacteriol. 1986 Nov;168(2):694-701. doi: 10.1128/jb.168.2.694-701.1986.

Abstract

Selenomonas ruminantium HD4 and Bacteroides ruminicola B(1)4 were grown in continuous culture with glucose as the energy source, and heat production was measured continuously with a microcalorimeter. Because the bacteria were grown under steady-state conditions, it was possible to calculate complete energy balances for substrate utilization and product formation (cells, fermentation acids, and heat). As the dilution rate increased from 0.04 to 0.60 per h, the heat of fermentation declined from 19 to 2% and from 34 to 8% for S. ruminantium and B. ruminicola, respectively. At slow dilution rates the specific rate of heat production remained relatively constant (135 mW/g [dry weight] or 190 mW/g of protein for S. ruminantium and 247 mW/g [dry weight] or 467 mW/g of protein for B. ruminicola). Since the heat due to growth-related functions was small compared to maintenance expenditures, total heat production provided a reasonable estimate of maintenance under glucose-limiting conditions. As the dilution rate was increased, glucose eventually accumulated in the chemostat vessel and the specific rates of heat production increased more than twofold. Pulses of glucose added to glucose-limited cultures (0.167 per h) caused an immediate doubling of heat production and little increase in cell protein. These experiments indicate that bacterial maintenance energy is not necessarily a constant and that energy source accumulation was associated with an increase in heat production.

摘要

以葡萄糖作为能源,在连续培养条件下培养反刍月形单胞菌HD4和栖瘤胃拟杆菌B(1)4,并使用微量热计连续测量产热。由于细菌是在稳态条件下生长的,因此可以计算底物利用和产物形成(细胞、发酵酸和热量)的完整能量平衡。随着稀释率从每小时0.04增加到0.60,反刍月形单胞菌和栖瘤胃拟杆菌的发酵热分别从19%下降到2%和从34%下降到8%。在低稀释率下,产热比速率保持相对恒定(反刍月形单胞菌为135毫瓦/克[干重]或190毫瓦/克蛋白质,栖瘤胃拟杆菌为247毫瓦/克[干重]或467毫瓦/克蛋白质)。由于与生长相关功能产生的热量与维持消耗相比很小,因此在葡萄糖限制条件下,总产热提供了维持消耗的合理估计。随着稀释率的增加,葡萄糖最终在恒化器容器中积累,产热比速率增加了两倍多。向葡萄糖限制培养物(每小时0.167)中添加葡萄糖脉冲会导致产热立即加倍,而细胞蛋白质几乎没有增加。这些实验表明,细菌的维持能量不一定是恒定的,并且能量源积累与产热增加有关。

相似文献

1
Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy.
J Bacteriol. 1986 Nov;168(2):694-701. doi: 10.1128/jb.168.2.694-701.1986.
2
Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
Appl Environ Microbiol. 1992 Jan;58(1):48-54. doi: 10.1128/aem.58.1.48-54.1992.
3
Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.
Appl Environ Microbiol. 1987 Dec;53(12):2849-53. doi: 10.1128/aem.53.12.2849-2853.1987.
5
Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria.
Appl Environ Microbiol. 1990 Dec;56(12):3867-70. doi: 10.1128/aem.56.12.3867-3870.1990.
6
Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23.
Appl Environ Microbiol. 1992 Jul;58(7):2331-3. doi: 10.1128/aem.58.7.2331-2333.1992.
7
Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture.
Appl Environ Microbiol. 1979 Mar;37(3):537-43. doi: 10.1128/aem.37.3.537-543.1979.
9
Efficiency of energy utilization by mixed rumen bacteria in continuous culture.
J Dairy Sci. 1975 Nov;58(11):1645-59. doi: 10.3168/jds.S0022-0302(75)84763-1.

引用本文的文献

2
Bioenergetics of aerobic and anaerobic growth of CN32.
Front Microbiol. 2023 Aug 2;14:1234598. doi: 10.3389/fmicb.2023.1234598. eCollection 2023.
3
Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows.
Front Microbiol. 2022 Feb 28;13:804562. doi: 10.3389/fmicb.2022.804562. eCollection 2022.
4
Differential Dynamics of the Ruminal Microbiome of Jersey Cows in a Heat Stress Environment.
Animals (Basel). 2020 Jul 2;10(7):1127. doi: 10.3390/ani10071127.
6
The hologenome concept of evolution after 10 years.
Microbiome. 2018 Apr 25;6(1):78. doi: 10.1186/s40168-018-0457-9.
7
Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions.
Front Microbiol. 2018 Feb 1;9:109. doi: 10.3389/fmicb.2018.00109. eCollection 2018.
8
Do microbiotas warm their hosts?
Gut Microbes. 2016 Jul 3;7(4):283-285. doi: 10.1080/19490976.2016.1182294. Epub 2016 May 5.
9
Nanocalorimetric Characterization of Microbial Activity in Deep Subsurface Oceanic Crustal Fluids.
Front Microbiol. 2016 Apr 5;7:454. doi: 10.3389/fmicb.2016.00454. eCollection 2016.
10
Maximizing efficiency of rumen microbial protein production.
Front Microbiol. 2015 May 15;6:465. doi: 10.3389/fmicb.2015.00465. eCollection 2015.

本文引用的文献

1
Fermentation of Peptides by Bacteroides ruminicola B(1)4.
Appl Environ Microbiol. 1983 May;45(5):1566-74. doi: 10.1128/aem.45.5.1566-1574.1983.
2
Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture.
Appl Environ Microbiol. 1979 Mar;37(3):537-43. doi: 10.1128/aem.37.3.537-543.1979.
3
Comparison of substrate affinities among several rumen bacteria: a possible determinant of rumen bacterial competition.
Appl Environ Microbiol. 1979 Mar;37(3):531-6. doi: 10.1128/aem.37.3.531-536.1979.
4
Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms.
Appl Environ Microbiol. 1978 Aug;36(2):319-29. doi: 10.1128/aem.36.2.319-329.1978.
5
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
8
The reaction of pentoses with anthrone.
Biochem J. 1958 Apr;68(4):669-72. doi: 10.1042/bj0680669.
9
The continuous culture of bacteria; a theoretical and experimental study.
J Gen Microbiol. 1956 Jul;14(3):601-22. doi: 10.1099/00221287-14-3-601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验