Suppr超能文献

基于多视图融合的局部-全局动态金字塔卷积交叉变换器网络用于乳腺钼靶密度分类

Multi-view fusion-based local-global dynamic pyramid convolutional cross-tansformer network for density classification in mammography.

作者信息

Zhong Yutong, Piao Yan, Zhang Guohui

机构信息

Electronic Information Engineering School, Changchun University of Science and Technology, Changchun, People's Republic of China.

Department of Pneumoconiosis Diagnosis and Treatment Center, Occupational Preventive and Treatment Hospital in Jilin Province, Changchun, People's Republic of China.

出版信息

Phys Med Biol. 2023 Nov 15;68(22). doi: 10.1088/1361-6560/ad02d7.

Abstract

Breast density is an important indicator of breast cancer risk. However, existing methods for breast density classification do not fully utilise the multi-view information produced by mammography and thus have limited classification accuracy.In this paper, we propose a multi-view fusion network, denoted local-global dynamic pyramidal-convolution transformer network (LG-DPTNet), for breast density classification in mammography. First, for single-view feature extraction, we develop a dynamic pyramid convolutional network to enable the network to adaptively learn global and local features. Second, we address the problem exhibited by traditional multi-view fusion methods, this is based on a cross-transformer that integrates fine-grained information and global contextual information from different views and thereby provides accurate predictions for the network. Finally, we use an asymmetric focal loss function instead of traditional cross-entropy loss during network training to solve the problem of class imbalance in public datasets, thereby further improving the performance of the model.We evaluated the effectiveness of our method on two publicly available mammography datasets, CBIS-DDSM and INbreast, and achieved areas under the curve (AUC) of 96.73% and 91.12%, respectively.Our experiments demonstrated that the devised fusion model can more effectively utilise the information contained in multiple views than existing models and exhibits classification performance that is superior to that of baseline and state-of-the-art methods.

摘要

乳腺密度是乳腺癌风险的重要指标。然而,现有的乳腺密度分类方法并未充分利用乳腺钼靶检查产生的多视图信息,因此分类准确率有限。在本文中,我们提出了一种用于乳腺钼靶检查中乳腺密度分类的多视图融合网络,称为局部-全局动态金字塔卷积变压器网络(LG-DPTNet)。首先,对于单视图特征提取,我们开发了一种动态金字塔卷积网络,使网络能够自适应地学习全局和局部特征。其次,我们解决了传统多视图融合方法所表现出的问题,这是基于一个交叉变压器,它整合了来自不同视图的细粒度信息和全局上下文信息,从而为网络提供准确的预测。最后,我们在网络训练期间使用非对称焦点损失函数代替传统的交叉熵损失来解决公共数据集中的类别不平衡问题,从而进一步提高模型的性能。我们在两个公开可用的乳腺钼靶数据集CBIS-DDSM和INbreast上评估了我们方法的有效性,分别实现了96.73%和91.12%的曲线下面积(AUC)。我们的实验表明,所设计的融合模型比现有模型能更有效地利用多视图中包含的信息,并且表现出优于基线和现有最先进方法的分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验