Suppr超能文献

基于迁移学习模型预处理和混合的增强型乳腺肿块 mammography 分类方法。

Enhanced breast mass mammography classification approach based on pre-processing and hybridization of transfer learning models.

机构信息

LIM Laboratory, University of Laghouat Amar Telidji, Laghouat, Algeria.

出版信息

J Cancer Res Clin Oncol. 2023 Nov;149(16):14549-14564. doi: 10.1007/s00432-023-05249-1. Epub 2023 Aug 12.

Abstract

BACKGROUND AND OBJECTIVE

The second most prevalent cause of death among women is now breast cancer, surpassing heart disease. Mammography images must accurately identify breast masses to diagnose early breast cancer, which can significantly increase the patient's survival percentage. Although, due to the diversity of breast masses and the complexity of their microenvironment, it is still a significant issue. Hence, an issue that researchers need to continue searching into is how to establish a reliable breast mass detection approach in an effective factor application to increase patient survival. Even though several machine and deep learning-based approaches were proposed to address these issues, pre-processing strategies and network architectures were insufficient for breast mass detection in mammogram scans, which directly influences the accuracy of the proposed models.

METHODS

Aiming to resolve these issues, we propose a two-stage classification method for breast mass mammography scans. First, we introduce a pre-processing stage divided into three sub-strategies, which include several filters for Region Of Interest (ROI) extraction, noise removal, and image enhancements. Secondly, we propose a classification stage based on transfer learning techniques for feature extraction, and global pooling for classification instead of standard machine learning algorithms or fully connected layers. However, instead of using the traditional fine-tuning feature extraction phase, we proposed a hybrid model where we concatenate two recent pre-trained CNNs to assist the feature extraction phase, rather than using one.

RESULTS

Using the CBIS-DDSM dataset, we managed to increase mainly each of the accuracy, sensitivity, and specificity reaching the highest accuracy of 98,1% using the Median filter for noise removal. Followed by the Gaussian filter trial with 96% accuracy, meanwhile, the winner filter attained the lowest accuracy of 94.13%. Moreover, the usage of global average pooling as a classifier is suitable in our case better than global max pooling.

CONCLUSION

The experimental findings demonstrate that the suggested strategy of breast Mass detection in mammography can outperform the top-ranked methods currently in use in terms of classification performance.

摘要

背景与目的

女性死亡的第二大主要原因现已变为乳腺癌,超过心脏病。乳腺 X 光图像必须准确识别乳腺肿块以诊断早期乳腺癌,这可以显著提高患者的存活率。尽管如此,由于乳腺肿块的多样性及其微环境的复杂性,这仍然是一个重大问题。因此,研究人员需要继续研究的一个问题是如何建立一种可靠的乳腺肿块检测方法,以有效应用提高患者的生存率。尽管已经提出了几种基于机器和深度学习的方法来解决这些问题,但乳腺 X 光扫描中的预处理策略和网络架构对于乳腺肿块检测仍然不足,这直接影响了所提出模型的准确性。

方法

为了解决这些问题,我们提出了一种用于乳腺肿块乳腺 X 光扫描的两阶段分类方法。首先,我们引入了一个预处理阶段,分为三个子策略,包括用于提取感兴趣区域(ROI)的几个滤波器、去除噪声和图像增强。其次,我们提出了一种基于迁移学习技术的分类阶段,用于特征提取,以及全局池化进行分类,而不是标准的机器学习算法或全连接层。然而,我们没有使用传统的微调特征提取阶段,而是提出了一种混合模型,其中我们串联了两个最近的预训练 CNN 来辅助特征提取阶段,而不是使用一个。

结果

使用 CBIS-DDSM 数据集,我们主要通过使用中值滤波器去除噪声来提高准确率、敏感度和特异性,达到了 98.1%的最高准确率。其次是使用高斯滤波器的尝试,准确率达到了 96%,而获胜滤波器的准确率最低,为 94.13%。此外,在我们的情况下,使用全局平均池化作为分类器比全局最大池化更合适。

结论

实验结果表明,所提出的乳腺 X 光摄影中乳腺肿块检测策略在分类性能方面优于目前使用的顶级方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验