Institut Jacques Monod, Université de Paris Cité, Paris, France.
Institut de Biologie, Ecole Normale Supérieure, Université PSL, Paris, France.
Nat Struct Mol Biol. 2023 Nov;30(11):1707-1718. doi: 10.1038/s41594-023-01104-6. Epub 2023 Oct 12.
Using Sanger sequencing and high-throughput genome sequencing of DNA cleavage reactions, we find that the Streptococcus pyogenes SpCas9 complex responds to internal mechanical strain by robustly generating a distribution of overhanging, rather than blunt, DNA ends. Internal mechanical strain is generated by shifting (increasing or decreasing) the spacing between the RNA-DNA hybrid and the downstream canonical PAM. Up to 2-base 3' overhangs can be robustly generated via a 2-base increase in the distance between hybrid and PAM. We also use single-molecule experiments to reconstruct the full course of the CRISPR-SpCas9 reaction in real-time, structurally and kinetically monitoring and quantifying R-loop formation, the first and second DNA-incision events, and dissociation of the post-catalytic complex. Complex dissociation and release of broken DNA ends is a rate-limiting step of the reaction, and shifted SpCas9 is sufficiently destabilized so as to rapidly dissociate after formation of broken DNA ends.
使用桑格测序(Sanger sequencing)和高通量基因组测序技术对 DNA 切割反应进行分析,我们发现化脓性链球菌 SpCas9 复合物通过生成大量突出而非平齐的 DNA 末端来应对内部机械应变。内部机械应变是通过改变(增加或减少)RNA-DNA 杂交体与下游标准 PAM 之间的间距而产生的。通过增加杂交体与 PAM 之间 2 个碱基的距离,可以稳定地产生长达 2 个碱基的 3' 突出。我们还使用单分子实验实时重建 CRISPR-SpCas9 反应的全过程,结构和动力学监测和定量 R 环形成、第一个和第二个 DNA 切口事件以及催化后复合物的解离。复合物解离和断裂 DNA 末端的释放是反应的限速步骤,并且移位的 SpCas9 被充分去稳定化,以至于在形成断裂的 DNA 末端后迅速解离。