Han Lishun, Guo Yiming, Ning Fanghua, Liu Xiaoyu, Yi Jin, Luo Qun, Qu Baihua, Yue Jili, Lu Yangfan, Li Qian
State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering and Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai, 200444, China.
Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 20044, China.
Adv Mater. 2024 Mar;36(11):e2308086. doi: 10.1002/adma.202308086. Epub 2023 Dec 16.
Zn-ion batteries (ZIBs) have long suffered from the unstable Zn metal anode, which faces numerous challenges concerning dendrite growth, corrosion, and hydrogen evolution reaction. The absence of H O adsorption control techniques has become a bottleneck for the further development of ZIBs. Using the stearic acid (SA)-modified Cu@Zn (SA-Cu@Zn) anode as an example, this work illustrates how the lotus effect controls the H O adsorption energy on the Zn metal anode. In situ integrated Cu nanorods arrays and hydrophobic long-chain alkyl groups are constructed, which provide zincophilic ordered channels and hydrophobic property. Consequently, the SA-Cu@Zn anode exhibits long-term cycling stability over 2000 h and high average Coulombic efficiency (CE) of 99.83% at 1 mA cm for 1 mAh cm , which improves the electrochemical performance of the Zn||V O full cell. Density functional theory (DFT) calculations combined with water contact angle (CA) measurements demonstrate that the SA-Cu@Zn exhibits larger water CA and weaker H O adsorption than Zn. Moreover, the presence of Cu ensures the selective adsorption of Zn on the SA-Cu@Zn anode, well explaining how the excellent reversibility is achieved. This work demonstrates the effectiveness of the lotus effect on controllable H O adsorption and Zn deposition mechanism, offering a universal strategy for achieving stable ZIB anodes.
锌离子电池(ZIBs)长期以来一直受不稳定的锌金属负极困扰,该负极在枝晶生长、腐蚀和析氢反应方面面临诸多挑战。缺乏对水吸附的控制技术已成为ZIBs进一步发展的瓶颈。以硬脂酸(SA)修饰的Cu@Zn(SA-Cu@Zn)负极为例,这项工作说明了荷叶效应如何控制锌金属负极上的水吸附能。原位构建了集成的铜纳米棒阵列和疏水长链烷基,它们提供了亲锌有序通道和疏水性。因此,SA-Cu@Zn负极在1 mA cm² 下对1 mAh cm² 表现出超过2000小时的长期循环稳定性和99.83%的高平均库仑效率(CE),这提高了Zn||V₂O₅全电池的电化学性能。密度泛函理论(DFT)计算结合水接触角(CA)测量表明,SA-Cu@Zn比锌表现出更大的水接触角和更弱的水吸附。此外,铜的存在确保了锌在SA-Cu@Zn负极上的选择性吸附,很好地解释了如何实现优异的可逆性。这项工作证明了荷叶效应在可控水吸附和锌沉积机制方面的有效性,为实现稳定的ZIB负极提供了一种通用策略。