Zhu Jiacai, Yang Min, Hu Yang, Yao Minjie, Chen Jun, Niu Zhiqiang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
Adv Mater. 2024 Jan;36(3):e2304426. doi: 10.1002/adma.202304426. Epub 2023 Dec 2.
Metal zinc is a promising anode candidate of aqueous zinc-ion batteries due to high theoretical capacity, low cost, and high safety. However, it often suffers from hydrogen evolution reaction (HER), dendrite growth, and formation of by-products. Herein, a triethyl phosphate (TEP)/H O binary phase electrolyte (BPE) interface is developed by introducing TEP-based electrolyte-wetted hydrophobic polypropylene (PP) separator onto the Zn anode surface. The equilibrium of the BPE interface depends on the comparable surface tensions of H O-based and TEP-based electrolytes on hydrophobic PP separator surfaces. The BPE interface induces Zn solvation structure conversion from [Zn(H O) ] to [Zn(TEP) (H O) ] , where most solvated H O molecules are removed. In [Zn(TEP) (H O) ] , the residual H O molecules can be further constrained by the formation of H bonds between TEP and H O molecules. Consequently, the ionization of solvated H O molecules is effectively suppressed, and HER and by-products are effectively restricted on Zn anode surfaces in BPE. As a result, Zn anodes exhibit a high Coulombic efficiency of 99.12% and superior cycling performance of 6000 h, which is much higher than the case in single-phase aqueous electrolytes. To illustrate the feasibility of BPE in full cells, the Zn/Al V O batteries are assembled based on the BPE and exhibited enhanced cycling performance.
金属锌由于具有高理论容量、低成本和高安全性,是水系锌离子电池很有前景的负极候选材料。然而,它经常受到析氢反应(HER)、枝晶生长和副产物形成的困扰。在此,通过将基于磷酸三乙酯(TEP)的电解质浸润的疏水聚丙烯(PP)隔膜引入到锌负极表面,开发了一种磷酸三乙酯(TEP)/H₂O二元相电解质(BPE)界面。BPE界面的平衡取决于基于H₂O的电解质和基于TEP的电解质在疏水PP隔膜表面的可比表面张力。BPE界面诱导锌溶剂化结构从[Zn(H₂O)₆]²⁺转变为[Zn(TEP)₄(H₂O)₂]²⁺,其中大部分溶剂化的H₂O分子被去除。在[Zn(TEP)₄(H₂O)₂]²⁺中,残留的H₂O分子可以通过TEP和H₂O分子之间形成氢键而进一步受到限制。因此,溶剂化H₂O分子的电离被有效抑制,并且HER和副产物在BPE中的锌负极表面受到有效限制。结果,锌负极表现出99.12%的高库仑效率和6000小时的优异循环性能,这比单相水系电解质中的情况要高得多。为了说明BPE在全电池中的可行性,基于BPE组装了Zn/Al₂V₂O₇电池,并表现出增强的循环性能。