Suppr超能文献

预测前列腺癌风险模型的开发与验证

Development and validation of a model for predicting the risk of prostate cancer.

作者信息

Li Ya-Dong, Ren Zheng-Ju, Gou Yuan-Qing, Liu Chuan, Gao Liang

机构信息

Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.

出版信息

Int Urol Nephrol. 2024 Mar;56(3):973-980. doi: 10.1007/s11255-023-03837-1. Epub 2023 Oct 13.

Abstract

BACKGROUND

Abnormal hematologic parameters before patients undergoing prostate biopsy play a pivotal role in guiding the surgical management of prostate cancer (PCa) incidence. This study aims to establish the first nomogram for predicting PCa risk for better surgical management.

METHODS

We retrospectively reviewed and analyzed the data including basic information, preoperative hematologic parameters, and imaging examination of 540 consecutive patients who underwent transrectal ultrasound (TRUS)-guided prostate biopsy for elevated prostate-specific antigen (PSA) in our medical center between 2017 and 2021. Logistic regression analysis was used to determine the risk factors for PCa occurrence, and the nomogram was constructed to predict PCa occurrence. Finally, the data including 121 consecutive patients in 2022 were prospectively collected to further verify the results.

RESULTS

In retrospective analyses, univariate and multivariate logistic analyses identified that three variables including age, diabetes, and De Ritis ratio (aspartate transaminase/alanine transaminase, AST/ALT) were determined to be significantly associated with PCa occurrence. A nomogram was constructed based on these variables for predicting the risk of PCa, and a satisfied predictive accuracy of the model was determined with a C-index of 0.765, supported by a prospective validation group with a C-index of 0.736. The Decision curve analysis showed promising clinical application. In addition, our results also showed that the De Ritis ratio was significantly correlated with the clinical stage of PCa patients, including T, N, and M stages, but insignificantly related to the Gleason score.

CONCLUSIONS

The increased De Ritis ratio was significantly associated with the risk and clinical stage of PCa and this nomogram with good discrimination could effectively improve individualized surgical management for patient underdoing prostate biopsy.

摘要

背景

前列腺活检前患者血液学参数异常在指导前列腺癌(PCa)发病的手术管理中起关键作用。本研究旨在建立首个预测PCa风险的列线图,以实现更好的手术管理。

方法

我们回顾性分析了2017年至2021年期间在本医疗中心因前列腺特异性抗原(PSA)升高而接受经直肠超声(TRUS)引导下前列腺活检的540例连续患者的数据,包括基本信息、术前血液学参数和影像学检查。采用逻辑回归分析确定PCa发生的危险因素,并构建列线图预测PCa发生。最后,前瞻性收集了2022年121例连续患者的数据以进一步验证结果。

结果

在回顾性分析中,单因素和多因素逻辑分析确定年龄、糖尿病和德瑞蒂斯比值(天冬氨酸转氨酶/丙氨酸转氨酶,AST/ALT)这三个变量与PCa发生显著相关。基于这些变量构建了预测PCa风险的列线图,模型的预测准确性良好,C指数为0.765,前瞻性验证组的C指数为0.736支持了这一结果。决策曲线分析显示出良好的临床应用前景。此外,我们的结果还表明,德瑞蒂斯比值与PCa患者的临床分期(包括T、N和M期)显著相关,但与Gleason评分无显著相关性。

结论

德瑞蒂斯比值升高与PCa的风险和临床分期显著相关,该具有良好区分度的列线图可有效改善接受前列腺活检患者的个体化手术管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验