Suppr超能文献

帕金森病轻度认知障碍的频率依赖性微状态特征。

Frequency-Dependent Microstate Characteristics for Mild Cognitive Impairment in Parkinson's Disease.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:4115-4124. doi: 10.1109/TNSRE.2023.3324343. Epub 2023 Oct 24.

Abstract

Cognitive impairment is typically reflected in the time and frequency variations of electroencephalography (EEG). Integrating time-domain and frequency-domain analysis methods is essential to better understand and assess cognitive ability. Timely identification of cognitive levels in early Parkinson's disease (ePD) patients can help mitigate the risk of future dementia. For the investigation of the brain activity and states related to cognitive levels, this study recruited forty ePD patients for EEG microstate analysis, including 13 with mild cognitive impairment (MCI) and 27 without MCI (control group). To determine the specific frequency band on which the microstate analysis relies, a deep learning framework was employed to discern the frequency dependence of the cognitive level in ePD patients. The input to the convolutional neural network consisted of the power spectral density of multi-channel multi-point EEG signals. The visualization technique of gradient-weighted class activation mapping was utilized to extract the optimal frequency band for identifying MCI samples. Within this frequency band, microstate analysis was conducted and correlated with the Montreal Cognitive Assessment (MoCA) Scale. The deep neural network revealed significant differences in the 1-11.5Hz spectrum of the ePD-MCI group compared to the control group. In this characteristic frequency band, ePD-MCI patients exhibited a pattern of global microstate disorder. The coverage rate and occurrence frequency of microstate A and D increased significantly and were both negatively correlated with the MoCA scale. Meanwhile, the coverage, frequency and duration of microstate C decreased significantly and were positively correlated with the MoCA scale. Our work unveils abnormal microstate characteristics in ePD-MCI based on time-frequency fusion, enhancing our understanding of cognitively related brain dynamics and providing electrophysiological markers for ePD-MCI recognition.

摘要

认知障碍通常反映在脑电图 (EEG) 的时间和频率变化中。整合时域和频域分析方法对于更好地理解和评估认知能力至关重要。及时识别早期帕金森病 (ePD) 患者的认知水平有助于降低未来痴呆的风险。为了研究与认知水平相关的大脑活动和状态,本研究对 40 名 ePD 患者进行了 EEG 微状态分析,其中包括 13 名轻度认知障碍 (MCI) 和 27 名无 MCI (对照组)。为了确定微状态分析所依赖的特定频带,采用深度学习框架来识别 ePD 患者认知水平的频带依赖性。卷积神经网络的输入包括多通道多点 EEG 信号的功率谱密度。利用梯度加权类激活映射的可视化技术提取用于识别 MCI 样本的最佳频带。在该频带内进行微状态分析,并与蒙特利尔认知评估 (MoCA) 量表相关联。深度神经网络揭示了 ePD-MCI 组与对照组在 1-11.5Hz 频谱上的显著差异。在这个特征频带中,ePD-MCI 患者表现出全局微状态紊乱的模式。微状态 A 和 D 的覆盖率和出现频率显著增加,与 MoCA 量表呈负相关。同时,微状态 C 的覆盖率、频率和持续时间显著降低,与 MoCA 量表呈正相关。我们的工作揭示了基于时频融合的 ePD-MCI 异常微状态特征,增强了我们对与认知相关的大脑动力学的理解,并为 ePD-MCI 识别提供了电生理标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验