Suppr超能文献

相位滞后指数和频谱功率作为 QEEG 特征,用于识别帕金森病伴轻度认知障碍患者。

Phase lag index and spectral power as QEEG features for identification of patients with mild cognitive impairment in Parkinson's disease.

机构信息

Department of Neurology, University Hospital Basel, Basel, Switzerland; Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland.

Department of Neurology, University Hospital Basel, Basel, Switzerland.

出版信息

Clin Neurophysiol. 2019 Oct;130(10):1937-1944. doi: 10.1016/j.clinph.2019.07.017. Epub 2019 Jul 25.

Abstract

OBJECTIVES

To identify quantitative EEG frequency and connectivity features (Phase Lag Index) characteristic of mild cognitive impairment (MCI) in Parkinson's disease (PD) patients and to investigate if these features correlate with cognitive measures of the patients.

METHODS

We recorded EEG data for a group of PD patients with MCI (n = 27) and PD patients without cognitive impairment (n = 43) using a high-resolution recording system. The EEG files were processed and 66 frequency along with 330 connectivity (phase lag index, PLI) measures were calculated. These measures were used to classify MCI vs. MCI-free patients. We also assessed correlations of these features with cognitive tests based on comprehensive scores (domains).

RESULTS

PLI measures classified PD-MCI from non-MCI patients better than frequency measures. PLI in delta, theta band had highest importance for identifying patients with MCI. Amongst cognitive domains, we identified the most significant correlations between Memory and Theta PLI, Attention and Beta PLI.

CONCLUSION

PLI is an effective quantitative EEG measure to identify PD patients with MCI.

SIGNIFICANCE

We identified quantitative EEG measures which are important for early identification of cognitive decline in PD.

摘要

目的

确定帕金森病(PD)患者轻度认知障碍(MCI)的定量脑电图频率和连通性特征(相位滞后指数),并探讨这些特征是否与患者的认知测量相关。

方法

我们使用高分辨率记录系统为一组患有 MCI 的 PD 患者(n=27)和无认知障碍的 PD 患者(n=43)记录 EEG 数据。对 EEG 文件进行处理,并计算了 66 个频率和 330 个连通性(相位滞后指数,PLI)测量值。这些措施用于将 MCI 与无 MCI 患者进行分类。我们还根据综合评分(域)评估了这些特征与认知测试的相关性。

结果

PLI 测量值比频率测量值更能区分 PD-MCI 患者和非 MCI 患者。Delta、Theta 波段的 PLI 对识别 MCI 患者具有最重要的意义。在认知领域中,我们发现记忆与Theta PLI 之间以及注意力与 Beta PLI 之间存在最显著的相关性。

结论

PLI 是一种有效的定量脑电图测量方法,可用于识别 PD 患者的 MCI。

意义

我们确定了对 PD 患者认知能力下降早期识别很重要的定量脑电图测量值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验