Suppr超能文献

基于脑电图的阿尔茨海默病和额颞叶痴呆分类:判别特征的综合分析

EEG-based classification of Alzheimer's disease and frontotemporal dementia: a comprehensive analysis of discriminative features.

作者信息

Rostamikia Mehran, Sarbaz Yashar, Makouei Somaye

机构信息

Biomedical System Modeling Lab, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, University of Tabriz, Tabriz, Iran.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):3447-3462. doi: 10.1007/s11571-024-10152-7. Epub 2024 Jul 22.

Abstract

Alzheimer's disease (AD) and frontotemporal dementia (FTD) are two main types of dementia. These diseases have similar symptoms, and they both may be considered as AD. Early detection of dementia and differential diagnosis between AD and FTD can lead to more effective management of the disease and contributes to the advancement of knowledge and potential treatments. In this approach, several features were extracted from electroencephalogram (EEG) signals of 36 subjects diagnosed with AD, 23 FTD subjects, and 29 healthy controls (HC). Mann-Whitney U-test and t-test methods were employed for the selection of the best discriminative features. The Fp1 channel for FTD patients exhibited the most significant differences compared to AD. In addition, connectivity features in the delta and alpha subbands indicated promising discrimination among these two groups. Moreover, for dementia diagnosis (AD + FTD vs. HC), central brain regions including Cz and Pz channels proved to be determining for the extracted features. Finally, four machine learning (ML) algorithms were utilized for the classification purpose. For differentiating between AD and FTD, and dementia diagnosis, an accuracy of 87.8% and 93.5% were achieved respectively, using the tenfold cross-validation technique and employing support vector machines (SVM) as the classifier.

摘要

阿尔茨海默病(AD)和额颞叶痴呆(FTD)是痴呆的两种主要类型。这些疾病有相似的症状,并且它们都可能被视为AD。早期发现痴呆以及AD和FTD之间的鉴别诊断可以带来更有效的疾病管理,并有助于知识的进步和潜在治疗方法的发展。在这种方法中,从36名被诊断为AD的受试者、23名FTD受试者和29名健康对照(HC)的脑电图(EEG)信号中提取了几个特征。采用曼-惠特尼U检验和t检验方法来选择最佳鉴别特征。与AD相比,FTD患者的Fp1通道表现出最显著的差异。此外,δ和α子带中的连通性特征表明这两组之间有良好的鉴别能力。此外,对于痴呆诊断(AD + FTD与HC),包括Cz和Pz通道在内的大脑中央区域被证明对提取的特征起决定性作用。最后,使用四种机器学习(ML)算法进行分类。对于区分AD和FTD以及痴呆诊断,使用十折交叉验证技术并采用支持向量机(SVM)作为分类器,分别实现了87.8%和93.5%的准确率。

相似文献

1
EEG-based classification of Alzheimer's disease and frontotemporal dementia: a comprehensive analysis of discriminative features.
Cogn Neurodyn. 2024 Dec;18(6):3447-3462. doi: 10.1007/s11571-024-10152-7. Epub 2024 Jul 22.
3
Speech changes in old age: Methodological considerations for speech-based discrimination of healthy ageing and Alzheimer's disease.
Int J Lang Commun Disord. 2024 Jan-Feb;59(1):13-37. doi: 10.1111/1460-6984.12888. Epub 2023 May 4.
4
Automatic detection of Alzheimer's disease from EEG signals using an improved AFS-GA hybrid algorithm.
Cogn Neurodyn. 2024 Oct;18(5):2993-3013. doi: 10.1007/s11571-024-10130-z. Epub 2024 Jun 10.
6
Nimodipine for primary degenerative, mixed and vascular dementia.
Cochrane Database Syst Rev. 2001(1):CD000147. doi: 10.1002/14651858.CD000147.
7
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
8
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
9
Nimodipine for primary degenerative, mixed and vascular dementia.
Cochrane Database Syst Rev. 2002(3):CD000147. doi: 10.1002/14651858.CD000147.
10
Hormone replacement therapy to maintain cognitive function in women with dementia.
Cochrane Database Syst Rev. 2002(3):CD003799. doi: 10.1002/14651858.CD003799.

引用本文的文献

1
Enhancing Alzheimer's Diagnosis with Machine Learning on EEG: A Spectral Feature-Based Comparative Analysis.
Diagnostics (Basel). 2025 Aug 29;15(17):2190. doi: 10.3390/diagnostics15172190.
2
Privacy-preserving dementia classification from EEG via hybrid-fusion EEGNetv4 and federated learning.
Front Comput Neurosci. 2025 Aug 18;19:1617883. doi: 10.3389/fncom.2025.1617883. eCollection 2025.
3
A Deep Learning Approach to Alzheimer's Diagnosis Using EEG Data: Dual-Attention and Optuna-Optimized SVM.
Biomedicines. 2025 Aug 19;13(8):2017. doi: 10.3390/biomedicines13082017.
5
Frontotemporal dementia: a systematic review of artificial intelligence approaches in differential diagnosis.
Front Aging Neurosci. 2025 Apr 10;17:1547727. doi: 10.3389/fnagi.2025.1547727. eCollection 2025.
7
Deep learning-based classification of dementia using image representation of subcortical signals.
BMC Med Inform Decis Mak. 2025 Mar 6;25(1):113. doi: 10.1186/s12911-025-02924-w.

本文引用的文献

1
Brain Dynamics Complexity as a Signature of Cognitive Decline in Parkinson's Disease.
Mov Disord. 2024 Feb;39(2):305-317. doi: 10.1002/mds.29678. Epub 2023 Dec 6.
2
Differentiating Between Alzheimer's Disease and Frontotemporal Dementia Based on the Resting-State Multilayer EEG Network.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4521-4527. doi: 10.1109/TNSRE.2023.3329174. Epub 2023 Nov 16.
3
Frequency-Dependent Microstate Characteristics for Mild Cognitive Impairment in Parkinson's Disease.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4115-4124. doi: 10.1109/TNSRE.2023.3324343. Epub 2023 Oct 24.
6
Hippocampus and its involvement in Alzheimer's disease: a review.
3 Biotech. 2022 Feb;12(2):55. doi: 10.1007/s13205-022-03123-4. Epub 2022 Feb 1.
8
Automatic classification of schizophrenia patients using resting-state EEG signals.
Phys Eng Sci Med. 2021 Sep;44(3):855-870. doi: 10.1007/s13246-021-01038-7. Epub 2021 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验