Suppr超能文献

哺乳动物的成年神经发生和“不成熟”神经元:可塑性的进化权衡?

Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity?

机构信息

Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.

Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.

出版信息

Brain Struct Funct. 2024 Nov;229(8):1775-1793. doi: 10.1007/s00429-023-02717-9. Epub 2023 Oct 13.

Abstract

Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.

摘要

神经元可塑性在不同动物物种中的形式和程度可能有很大差异。成年神经发生,即通过成年期从神经干细胞产生新神经元的能力,在非哺乳动物脊椎动物中广泛存在,而在哺乳动物中则减少。越来越多的比较研究还报告了哺乳动物中神经干细胞龛的发生和活性存在差异,一般趋势是从小脑型物种向大脑型物种减少。相反,最近的研究表明,大脑型哺乳动物在没有细胞分裂的情况下,宿主大量表达典型神经发生标志物的神经元。在大脑皮层 II 层,出生前产生的、不分裂的神经元群体在整个生命过程中继续表达不成熟的分子标志物(皮质未成熟神经元;cINs)。这些 cINs 在很长一段时间内处于休眠状态后,仍然保留分化为成熟神经元的潜力,这些成熟神经元可以整合到预先存在的神经回路中。它们局限于小脑型啮齿动物的古皮质,而在大脑高度褶皱、大脑型大动物的广泛扩展的新皮质中延伸。目前的假设是,这些非新产生的“未成熟”神经元群体可能代表了具有减少干细胞驱动的成年神经发生的哺乳动物物种的发育可塑性细胞库。这表明,在大脑进化过程中,各种形式的可塑性可能存在权衡。这种平衡可能是维持在特定于物种的社会生态适应中具有独特作用的脑区的“可塑性储备”所必需的,例如新皮质和嗅觉结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3513/11485216/a3af8445c233/429_2023_2717_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验