Suppr超能文献

图卷积网络与对比学习小核仁 RNA(snoRNA)疾病关联(GCLSDA):通过图卷积网络和对比学习预测 snoRNA-疾病关联。

Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning.

机构信息

School of Computer Science and Engineering, Central South University, Changsha 410083, China.

出版信息

Int J Mol Sci. 2023 Sep 22;24(19):14429. doi: 10.3390/ijms241914429.

Abstract

Small nucleolar RNAs (snoRNAs) constitute a prevalent class of noncoding RNAs localized within the nucleoli of eukaryotic cells. Their involvement in diverse diseases underscores the significance of forecasting associations between snoRNAs and diseases. However, conventional experimental techniques for such predictions suffer limitations in scalability, protracted timelines, and suboptimal success rates. Consequently, efficient computational methodologies are imperative to realize the accurate predictions of snoRNA-disease associations. Herein, we introduce GCLSDA-raph Convolutional Network and ontrastive earning predict noRNA isease ssociations. GCLSDA is an innovative framework that combines graph convolution networks and self-supervised learning for snoRNA-disease association prediction. Leveraging the repository of MNDR v4.0 and ncRPheno databases, we construct a robust snoRNA-disease association dataset, which serves as the foundation to create bipartite graphs. The computational prowess of the light graph convolutional network (LightGCN) is harnessed to acquire nuanced embedded representations of both snoRNAs and diseases. With careful consideration, GCLSDA intelligently incorporates contrast learning to address the challenging issues of sparsity and over-smoothing inside correlation matrices. This combination not only ensures the precision of predictions but also amplifies the model's robustness. Moreover, we introduce the augmentation technique of random noise to refine the embedded snoRNA representations, consequently enhancing the precision of predictions. Within the domain of contrast learning, we unite the tasks of contrast and recommendation. This harmonization streamlines the cross-layer contrast process, simplifying the information propagation and concurrently curtailing computational complexity. In the area of snoRNA-disease associations, GCLSDA constantly shows its promising capacity for prediction through extensive research. This success not only contributes valuable insights into the functional roles of snoRNAs in disease etiology, but also plays an instrumental role in identifying potential drug targets and catalyzing innovative treatment modalities.

摘要

小核仁 RNA(snoRNA)是一类普遍存在的非编码 RNA,位于真核细胞的核仁中。它们在多种疾病中的参与突显了预测 snoRNA 与疾病之间关联的重要性。然而,传统的实验技术在可扩展性、冗长的时间线和不理想的成功率方面存在限制。因此,高效的计算方法对于实现 snoRNA-疾病关联的准确预测至关重要。在此,我们介绍了 GCLSDA-raph 卷积网络和对比学习来预测 snoRNA-疾病关联。GCLSDA 是一种创新的框架,结合了图卷积网络和自监督学习,用于 snoRNA-疾病关联预测。利用 MNDR v4.0 和 ncRPheno 数据库的存储库,我们构建了一个强大的 snoRNA-疾病关联数据集,作为创建二分图的基础。轻图卷积网络(LightGCN)的计算能力被用于获取 snoRNA 和疾病的细微嵌入式表示。经过精心考虑,GCLSDA 巧妙地结合了对比学习,以解决相关矩阵中稀疏和过度平滑的难题。这种组合不仅确保了预测的准确性,还增强了模型的稳健性。此外,我们引入了随机噪声增强技术来改进嵌入式 snoRNA 表示,从而提高预测的准确性。在对比学习领域,我们将对比和推荐任务结合在一起。这种协调简化了跨层对比过程,简化了信息传播并同时降低了计算复杂性。在 snoRNA-疾病关联领域,GCLSDA 通过广泛的研究不断展示其预测的潜力。这不仅为 snoRNA 在疾病发病机制中的功能作用提供了有价值的见解,而且为识别潜在的药物靶点和推动创新的治疗方式发挥了重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0664/10572952/cb62ccc728da/ijms-24-14429-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验