Suppr超能文献

应用双模型于优化的 LSTM 与 U-net 分割,以利用乳腺 X 光图像进行乳腺癌诊断。

Applying dual models on optimized LSTM with U-net segmentation for breast cancer diagnosis using mammogram images.

机构信息

Department of Computer Science and Engineering, School of Engineering & Technology, Pondicherry University (karaikal Campus), karaikal-609605, Puducherry UT, India..

Department of Computer Science and Engineering, School of Engineering & Technology, Pondicherry University (karaikal Campus), karaikal-609605, Puducherry UT, India.

出版信息

Artif Intell Med. 2023 Sep;143:102626. doi: 10.1016/j.artmed.2023.102626. Epub 2023 Jul 11.

Abstract

BACKGROUND OF THE STUDY

Breast cancer is the most fatal disease that widely affects women. When the cancerous lumps grow from the cells of the breast, it causes breast cancer. Self-analysis and regular medical check-ups help for detecting the disease earlier and enhance the survival rate. Hence, an automated breast cancer detection system in mammograms can assist clinicians in the patient's treatment. In medical techniques, the categorization of breast cancer becomes challenging for investigators and researchers. The advancement in deep learning approaches has established more attention to their advantages to medical imaging issues, especially for breast cancer detection.

AIM

The research work plans to develop a novel hybrid model for breast cancer diagnosis with the support of optimized deep-learning architecture.

METHODS

The required images are gathered from the benchmark datasets. These collected datasets are used in three pre-processing approaches like "Median Filtering, Histogram Equalization, and morphological operation", which helps to remove unwanted regions from the images. Then, the pre-processed images are applied to the Optimized U-net-based tumor segmentation phase for obtaining accurate segmented results along with the optimization of certain parameters in U-Net by employing "Adapted-Black Widow Optimization (A-BWO)". Further, the detection is performed in two different ways that is given as model 1 and model 2. In model 1, the segmented tumors are used to extract the significant patterns with the help of the "Gray-Level Co-occurrence Matrix (GLCM) and Local Gradient pattern (LGP)". Further, these extracted patterns are utilized in the "Dual Model accessed Optimized Long Short-Term Memory (DM-OLSTM)" for performing breast cancer detection and the detected score 1 is obtained. In model 2, the same segmented tumors are given into the different variants of CNN, such as "VGG19, Resnet150, and Inception". The extracted deep features from three CNN-based approaches are fused to form a single set of deep features. These fused deep features are inserted into the developed DM-OLSTM for getting the detected score 2 for breast cancer diagnosis. In the final phase of the hybrid model, the score 1 and score 2 obtained from model 1 and model 2 are averaged to get the final detection output.

RESULTS

The accuracy and F1-score of the offered DM-OLSTM model are achieved at 96 % and 95 %.

CONCLUSION

Experimental analysis proves that the recommended methodology achieves better performance by analyzing with the benchmark dataset. Hence, the designed model is helpful for detecting breast cancer in real-time applications.

摘要

研究背景

乳腺癌是一种广泛影响女性的最致命疾病。当癌性肿块从乳房细胞生长时,就会导致乳腺癌。自我分析和定期体检有助于更早地发现疾病,并提高生存率。因此,在乳房 X 光片中使用自动乳腺癌检测系统可以帮助临床医生对患者进行治疗。在医学技术中,乳腺癌的分类对研究人员来说具有挑战性。深度学习方法的进步引起了人们对其在医学成像问题上的优势的更多关注,特别是在乳腺癌检测方面。

目的

本研究工作旨在开发一种新的混合模型,通过支持优化的深度学习架构进行乳腺癌诊断。

方法

所需的图像从基准数据集收集。这些收集的数据集中应用了三种预处理方法,如“中值滤波、直方图均衡化和形态学操作”,有助于从图像中去除不需要的区域。然后,将预处理后的图像应用于基于优化 U 形网络的肿瘤分割阶段,以获得准确的分割结果,并通过使用“自适应黑寡妇优化(A-BWO)”优化 U 形网络中的某些参数。进一步,以两种不同的方式进行检测,分别表示为模型 1 和模型 2。在模型 1 中,使用“灰度共生矩阵(GLCM)和局部梯度模式(LGP)”从分割的肿瘤中提取显著模式。进一步,将这些提取的模式应用于“双模型访问优化的长短期记忆(DM-OLSTM)”中进行乳腺癌检测,并获得检测得分 1。在模型 2 中,将相同的分割肿瘤输入到 CNN 的不同变体中,如“VGG19、Resnet150 和 Inception”。从三个基于 CNN 的方法中提取的深度特征融合成一组单一的深度特征。将这些融合的深度特征插入到开发的 DM-OLSTM 中,以获得用于乳腺癌诊断的检测得分 2。在混合模型的最后阶段,将从模型 1 和模型 2 获得的得分 1 和得分 2 平均,得到最终的检测输出。

结果

提出的 DM-OLSTM 模型的准确率和 F1 得分分别达到 96%和 95%。

结论

实验分析证明,所提出的方法通过与基准数据集进行分析,能够获得更好的性能。因此,所设计的模型有助于实时应用中检测乳腺癌。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验