Suppr超能文献

使用新型深度学习开源模型对巴基斯坦乳腺癌患者的Ki-67进行定量分析:手动方法与自动方法的比较研究。

Use of a Novel Deep Learning Open-Source Model for Quantification of Ki-67 in Breast Cancer Patients in Pakistan: A Comparative Study between the Manual and Automated Methods.

作者信息

Zehra Talat, Jaffar Nazish, Shams Mahin, Chundriger Qurratulain, Ahmed Arsalan, Anum Fariha, Alsubaie Najah, Ahmad Zubair

机构信息

Department of Pathology, Jinnah Sindh Medical University, Karachi 75001, Pakistan.

Department of Pathology, United Medical and Dental College, Karachi 71500, Pakistan.

出版信息

Diagnostics (Basel). 2023 Sep 30;13(19):3105. doi: 10.3390/diagnostics13193105.

Abstract

Breast cancer is the most common cancer in women; its early detection plays a crucial role in improving patient outcomes. Ki-67 is a biomarker commonly used for evaluating the proliferation of cancer cells in breast cancer patients. The quantification of Ki-67 has traditionally been performed by pathologists through a manual examination of tissue samples, which can be time-consuming and subject to inter- and intra-observer variability. In this study, we used a novel deep learning model to quantify Ki-67 in breast cancer in digital images prepared by a microscope-attached camera. To compare the automated detection of Ki-67 with the manual eyeball/hotspot method. Place and duration of study: This descriptive, cross-sectional study was conducted at the Jinnah Sindh Medical University. Glass slides of diagnosed cases of breast cancer were obtained from the Aga Khan University Hospital after receiving ethical approval. The duration of the study was one month. We prepared 140 digital images stained with the Ki-67 antibody using a microscope-attached camera at 10×. An expert pathologist (P1) evaluated the Ki-67 index of the hotspot fields using the eyeball method. The images were uploaded to the DeepLiif software to detect the exact percentage of Ki-67 positive cells. SPSS version 24 was used for data analysis. Diagnostic accuracy was also calculated by other pathologists (P2, P3) and by AI using a Ki-67 cut-off score of 20 and taking P1 as the gold standard. The manual and automated scoring methods showed a strong positive correlation as the kappa coefficient was significant. The value was <0.001. The highest diagnostic accuracy, i.e., 95%, taking P1 as gold standard, was found for AI, compared to pathologists P2 and P3. Use of quantification-based deep learning models can make the work of pathologists easier and more reproducible. Our study is one of the earliest studies in this field. More studies with larger sample sizes are needed in future to develop a cohort.

摘要

乳腺癌是女性中最常见的癌症;其早期检测对改善患者预后起着至关重要的作用。Ki-67是一种常用于评估乳腺癌患者癌细胞增殖的生物标志物。传统上,Ki-67的定量是由病理学家通过对组织样本进行手动检查来完成的,这可能耗时且存在观察者间和观察者内的差异。在本研究中,我们使用了一种新型深度学习模型,对通过显微镜附带相机制备的数字图像中的乳腺癌Ki-67进行定量。以比较Ki-67的自动检测与手动眼球/热点法。研究地点和时间:本描述性横断面研究在真纳信德医科大学进行。在获得伦理批准后,从阿迦汗大学医院获取确诊乳腺癌病例的玻片。研究持续时间为一个月。我们使用10倍显微镜附带相机制备了140张用Ki-67抗体染色的数字图像。一位专家病理学家(P1)使用眼球法评估热点区域的Ki-67指数。将图像上传到DeepLiif软件以检测Ki-67阳性细胞的确切百分比。使用SPSS 24版进行数据分析。其他病理学家(P2、P3)和人工智能也以20的Ki-67临界值并以P1作为金标准计算诊断准确性。由于kappa系数显著,手动和自动评分方法显示出强正相关。p值<0.001。与病理学家P2和P3相比,以P1作为金标准,人工智能的诊断准确性最高,即95%。基于定量的深度学习模型的使用可以使病理学家的工作更轻松且更具可重复性。我们的研究是该领域最早的研究之一。未来需要更多样本量更大的研究来建立一个队列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/10572449/99f3b338a3f3/diagnostics-13-03105-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验