Department of Electronics and Instrumentation Engineering, National Institute of Technology, Dimapur, Nagaland, India.
Graefes Arch Clin Exp Ophthalmol. 2024 Jan;262(1):231-247. doi: 10.1007/s00417-023-06181-3. Epub 2023 Aug 7.
In this article, we present a computerized system for the analysis and assessment of diabetic retinopathy (DR) based on retinal fundus photographs. DR is a chronic ophthalmic disease and a major reason for blindness in people with diabetes. Consistent examination and prompt diagnosis are the vital approaches to control DR.
With the aim of enhancing the reliability of DR diagnosis, we utilized the deep learning model called You Only Look Once V3 (YOLO V3) to recognize and classify DR from retinal images. The DR was classified into five major stages: normal, mild, moderate, severe, and proliferative. We evaluated the performance of the YOLO V3 algorithm based on color fundus images.
We have achieved high precision and sensitivity on the train and test data for the DR classification and mean average precision (mAP) is calculated on DR lesion detection.
The results indicate that the suggested model distinguishes all phases of DR and performs better than existing models in terms of accuracy and implementation time.
本文提出了一种基于眼底照片分析和评估糖尿病视网膜病变(DR)的计算机系统。DR 是一种慢性眼病,也是糖尿病患者失明的主要原因。定期检查和及时诊断是控制 DR 的重要方法。
为了提高 DR 诊断的可靠性,我们使用名为 You Only Look Once V3(YOLO V3)的深度学习模型来识别和分类视网膜图像中的 DR。DR 分为五个主要阶段:正常、轻度、中度、重度和增殖性。我们评估了 YOLO V3 算法在彩色眼底图像上的性能。
我们在 DR 分类的训练和测试数据上实现了高精度和高灵敏度,并且计算了 DR 病变检测的平均精度(mAP)。
结果表明,所提出的模型可以区分 DR 的所有阶段,并且在准确性和实现时间方面优于现有模型。