Tejedor Miguel, Hjerde Sigurd Nordtveit, Myhre Jonas Nordhaug, Godtliebsen Fred
Norwegian Centre for E-Health Research, P.O. Box 35, N-9038 Tromsø, Norway.
Faculty of Science and Technology, Norwegian University of Life Sciences, Postboks 5003 NMBU, 1432 Ås, Norway.
Diagnostics (Basel). 2023 Oct 7;13(19):3150. doi: 10.3390/diagnostics13193150.
Patients with type 1 diabetes must continually decide how much insulin to inject before each meal to maintain blood glucose levels within a healthy range. Recent research has worked on a solution for this burden, showing the potential of reinforcement learning as an emerging approach for the task of controlling blood glucose levels. In this paper, we test and evaluate several deep Q-learning algorithms for automated and personalized blood glucose regulation in an in silico type 1 diabetes patient with the goal of estimating and delivering proper insulin doses. The proposed algorithms are model-free approaches with no prior information about the patient. We used the Hovorka model with meal variation and carbohydrate counting errors to simulate the patient included in this work. Our experiments compare different deep Q-learning extensions showing promising results controlling blood glucose levels, with some of the proposed algorithms outperforming standard baseline treatment.
1型糖尿病患者必须在每餐之前不断决定注射多少胰岛素,以将血糖水平维持在健康范围内。最近的研究致力于解决这一负担,显示出强化学习作为控制血糖水平任务的一种新兴方法的潜力。在本文中,我们测试并评估了几种深度Q学习算法,用于在计算机模拟的1型糖尿病患者中进行自动化和个性化的血糖调节,目标是估计并提供适当的胰岛素剂量。所提出的算法是无模型方法,无需有关患者的先验信息。我们使用具有膳食变化和碳水化合物计数误差的霍沃卡模型来模拟这项研究中的患者。我们的实验比较了不同的深度Q学习扩展,显示出在控制血糖水平方面有很有前景的结果,一些所提出的算法优于标准基线治疗。