Dénes-Fazakas Lehel, Szilágyi László, Kovács Levente, De Gaetano Andrea, Eigner György
Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary.
Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary.
Biomedicines. 2024 Sep 21;12(9):2143. doi: 10.3390/biomedicines12092143.
Managing blood glucose levels effectively remains a significant challenge for individuals with diabetes. Traditional methods often lack the flexibility needed for personalized care. This study explores the potential of reinforcement learning-based approaches, which mimic human learning and adapt strategies through ongoing interactions, in creating dynamic and personalized blood glucose management plans. We developed a mathematical model specifically for patients with type IVP diabetes, validated with data from 10 patients and 17 key parameters. The model includes continuous glucose monitoring (CGM) noise and random carbohydrate intake to simulate real-life conditions. A closed-loop system was designed to enable the application of reinforcement learning algorithms. By implementing a Policy Optimization (PPO) branch, we achieved an average Time in Range (TIR) metric of 73%, indicating improved blood glucose control. This study presents a personalized insulin therapy solution using reinforcement learning. Our closed-loop model offers a promising approach for improving blood glucose regulation, with potential applications in personalized diabetes management.
对于糖尿病患者来说,有效管理血糖水平仍然是一项重大挑战。传统方法往往缺乏个性化护理所需的灵活性。本研究探讨了基于强化学习的方法的潜力,该方法模仿人类学习并通过持续互动调整策略,以创建动态和个性化的血糖管理计划。我们专门为IVP型糖尿病患者开发了一个数学模型,并用来自10名患者和17个关键参数的数据进行了验证。该模型包括连续血糖监测(CGM)噪声和随机碳水化合物摄入,以模拟现实生活情况。设计了一个闭环系统,以实现强化学习算法的应用。通过实施近端策略优化(PPO)分支,我们实现了73%的平均血糖达标时间(TIR)指标,表明血糖控制得到改善。本研究提出了一种使用强化学习的个性化胰岛素治疗方案。我们的闭环模型为改善血糖调节提供了一种有前景的方法,在个性化糖尿病管理中具有潜在应用价值。