Suppr超能文献

智利远洋捕捞渔获中鱼类的数字分类。

Digital Classification of Chilean Pelagic Species in Fishing Landing Lines.

机构信息

Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Concepción, Concepción 4070371, Chile.

Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile.

出版信息

Sensors (Basel). 2023 Sep 29;23(19):8163. doi: 10.3390/s23198163.

Abstract

Fishing landings in Chile are inspected to control fisheries that are subject to catch quotas. The control process is not easy since the volumes extracted are large and the numbers of landings and artisan shipowners are high. Moreover, the number of inspectors is limited, and a non-automated method is utilized that normally requires months of training. In this work, we propose, design, and implement an automated fish landing control system. The system consists of a custom gate with a camera array and controlled illumination that performs automatic video acquisition once the fish landing starts. The imagery is sent to the cloud in real time and processed by a custom-designed detection algorithm based on deep convolutional networks. The detection algorithm identifies and classifies different pelagic species in real time, and it has been tuned to identify the specific species found in landings of two fishing industries in the Biobío region in Chile. A web-based industrial software was also developed to display a list of fish detections, record relevant statistical summaries, and create landing reports in a user interface. All the records are stored in the cloud for future analyses and possible Chilean government audits. The system can automatically, remotely, and continuously identify and classify the following species: anchovy, jack mackerel, jumbo squid, mackerel, sardine, and snoek, considerably outperforming the current manual procedure.

摘要

智利的渔业捕捞上岸都要接受检查,以控制那些受到捕捞配额限制的渔业。由于捕捞量很大,上岸的渔船和个体船东数量众多,且检验员人数有限,目前仍采用非自动化的方法,而这种方法通常需要数月的培训,因此控制过程并不容易。在这项工作中,我们提出、设计并实现了一个自动化的鱼类上岸控制系统。该系统由一个带有摄像头阵列和受控照明的定制门组成,一旦鱼类上岸开始,它就会自动进行视频采集。实时将图像发送到云端,并由基于深度卷积网络的定制检测算法进行处理。该检测算法可以实时识别和分类不同的洄游鱼类物种,并经过调整以识别智利比奥比奥地区两个渔业的特定上岸物种。还开发了一个基于网络的工业软件,用于在用户界面中显示鱼类检测列表、记录相关统计摘要并创建上岸报告。所有记录都存储在云端,以备将来进行分析和可能的智利政府审计。该系统可以自动、远程和连续地识别和分类以下物种:凤尾鱼、鲐鱼、巨型鱿鱼、鲭鱼、沙丁鱼和鲱鱼,其性能明显优于当前的手动程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/027e/10575236/76dc62db077d/sensors-23-08163-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验