Suppr超能文献

预测间质血糖水平分类模型的比较分析。

Comparative Analysis of Predictive Interstitial Glucose Level Classification Models.

机构信息

Research Institute of Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia.

Institute of Smart Computing Technologies, Riga Technical University, LV-1048 Riga, Latvia.

出版信息

Sensors (Basel). 2023 Oct 6;23(19):8269. doi: 10.3390/s23198269.

Abstract

BACKGROUND

New methods of continuous glucose monitoring (CGM) provide real-time alerts for hypoglycemia, hyperglycemia, and rapid fluctuations of glucose levels, thereby improving glycemic control, which is especially crucial during meals and physical activity. However, complex CGM systems pose challenges for individuals with diabetes and healthcare professionals, particularly when interpreting rapid glucose level changes, dealing with sensor delays (approximately a 10 min difference between interstitial and plasma glucose readings), and addressing potential malfunctions. The development of advanced predictive glucose level classification models becomes imperative for optimizing insulin dosing and managing daily activities.

METHODS

The aim of this study was to investigate the efficacy of three different predictive models for the glucose level classification: (1) an autoregressive integrated moving average model (ARIMA), (2) logistic regression, and (3) long short-term memory networks (LSTM). The performance of these models was evaluated in predicting hypoglycemia (<70 mg/dL), euglycemia (70-180 mg/dL), and hyperglycemia (>180 mg/dL) classes 15 min and 1 h ahead. More specifically, the confusion matrices were obtained and metrics such as precision, recall, and accuracy were computed for each model at each predictive horizon.

RESULTS

As expected, ARIMA underperformed the other models in predicting hyper- and hypoglycemia classes for both the 15 min and 1 h horizons. For the 15 min forecast horizon, the performance of logistic regression was the highest of all the models for all glycemia classes, with recall rates of 96% for hyper, 91% for norm, and 98% for hypoglycemia. For the 1 h forecast horizon, the LSTM model turned out to be the best for hyper- and hypoglycemia classes, achieving recall values of 85% and 87% respectively.

CONCLUSIONS

Our findings suggest that different models may have varying strengths and weaknesses in predicting glucose level classes, and the choice of model should be carefully considered based on the specific requirements and context of the clinical application. The logistic regression model proved to be more accurate for the next 15 min, particularly in predicting hypoglycemia. However, the LSTM model outperformed logistic regression in predicting glucose level class for the next hour. Future research could explore hybrid models or ensemble approaches that combine the strengths of multiple models to further enhance the accuracy and reliability of glucose predictions.

摘要

背景

新型连续血糖监测(CGM)方法为低血糖、高血糖和血糖水平快速波动提供实时警报,从而改善血糖控制,这在进餐和体育活动期间尤为关键。然而,复杂的 CGM 系统给糖尿病患者和医疗保健专业人员带来了挑战,尤其是在解释快速血糖水平变化、处理传感器延迟(间质和血浆葡萄糖读数之间约有 10 分钟的差异)以及解决潜在故障时。开发先进的预测血糖水平分类模型对于优化胰岛素剂量和管理日常活动变得至关重要。

方法

本研究旨在探讨三种不同的血糖水平分类预测模型的效果:(1)自回归综合移动平均模型(ARIMA),(2)逻辑回归,和(3)长短时记忆网络(LSTM)。评估这些模型在预测 15 分钟和 1 小时提前的低血糖(<70mg/dL)、血糖正常(70-180mg/dL)和高血糖(>180mg/dL)类别方面的性能。更具体地说,获得了混淆矩阵,并为每个模型在每个预测时段计算了精度、召回率和准确性等指标。

结果

正如预期的那样,ARIMA 在预测 15 分钟和 1 小时的高血糖和低血糖类别方面的表现逊于其他模型。对于 15 分钟的预测时段,逻辑回归在所有血糖类别中表现最佳,高血糖的召回率为 96%,血糖正常为 91%,低血糖为 98%。对于 1 小时的预测时段,LSTM 模型在高血糖和低血糖类别中表现最佳,分别达到 85%和 87%的召回率。

结论

我们的研究结果表明,不同的模型在预测血糖水平类别方面可能具有不同的优势和劣势,模型的选择应根据临床应用的具体要求和背景仔细考虑。逻辑回归模型在接下来的 15 分钟内被证明更准确,特别是在预测低血糖方面。然而,LSTM 模型在预测下一个小时的血糖水平类别方面优于逻辑回归。未来的研究可以探索混合模型或集成方法,将多个模型的优势结合起来,以进一步提高血糖预测的准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a288/10574913/33153fce3614/sensors-23-08269-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验