Suppr超能文献

一种用于个性化血糖预测的多任务学习方法。

A Multitask Learning Approach to Personalized Blood Glucose Prediction.

出版信息

IEEE J Biomed Health Inform. 2022 Jan;26(1):436-445. doi: 10.1109/JBHI.2021.3100558. Epub 2022 Jan 17.

Abstract

Blood glucose prediction algorithms are key tools in the development of decision support systems and closed-loop insulin delivery systems for blood glucose control in diabetes. Deep learning models have provided leading results among machine learning algorithms to date in glucose prediction. However these models typically require large amounts of data to obtain best personalised glucose prediction results. Multitask learning facilitates an approach for leveraging data from multiple subjects while still learning accurate personalised models. In this work we present results comparing the effectiveness of multitask learning over sequential transfer learning, and learning only on subject-specific data with neural network and support vector regression. The multitask learning approach shows consistent leading performance in predictive metrics at both short-term and long-term prediction horizons. We obtain a predictive accuracy (RMSE) of 18.8 ±2.3, 25.3 ±2.9, 31.8 ±3.9, 41.2 ±4.5, 47.2 ±4.6 mg/dL at 30, 45, 60, 90, and 120 min prediction horizons respectively, with at least 93% clinically acceptable predictions using the Clarke Error Grid (EGA) at each prediction horizon. We also identify relevant prior information such as glycaemic variability that can be incorporated to improve predictive performance at long-term prediction horizons. Furthermore, we show consistent performance - ≤ 5% change in both RMSE and EGA (Zone A) - in rare cases of adverse glycaemic events with 1-6 weeks of training data. In conclusion, a multitask approach can allow for deploying personalised models even with significantly less subject-specific data without compromising performance.

摘要

血糖预测算法是开发糖尿病决策支持系统和闭环胰岛素输送系统以控制血糖的关键工具。深度学习模型在血糖预测方面提供了迄今为止机器学习算法中的领先结果。然而,这些模型通常需要大量数据才能获得最佳的个性化血糖预测结果。多任务学习促进了一种利用来自多个主体的数据的方法,同时仍然学习准确的个性化模型。在这项工作中,我们比较了多任务学习相对于顺序转移学习的有效性,以及仅使用神经网络和支持向量回归在特定主体数据上学习的效果。多任务学习方法在短期和长期预测中均表现出一致的领先性能预测指标。我们获得了 18.8±2.3、25.3±2.9、31.8±3.9、41.2±4.5、47.2±4.6mg/dL 的预测精度(RMSE),分别在 30、45、60、90 和 120min 的预测时,使用 Clarke 误差网格(EGA)在每个预测时至少有 93%的临床可接受预测。我们还确定了相关的先验信息,例如血糖变异性,这些信息可以被整合以提高长期预测时的预测性能。此外,我们在训练数据为 1-6 周的罕见不良血糖事件中显示出一致的性能- RMSE 和 EGA(Zone A)的变化均≤5%。总之,即使使用明显较少的特定主体数据,多任务方法也可以允许部署个性化模型,而不会影响性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验