Suppr超能文献

基于物联网环境下农田肥力算法与混合深度学习模型的心律失常自动分类

Automated Arrhythmia Classification Using Farmland Fertility Algorithm with Hybrid Deep Learning Model on Internet of Things Environment.

机构信息

Department of Information Systems, College of Computer and Information Sciences, Prince Sultan University, Riyadh 12435, Saudi Arabia.

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.

出版信息

Sensors (Basel). 2023 Oct 6;23(19):8265. doi: 10.3390/s23198265.

Abstract

In recent years, the rapid progress of Internet of Things (IoT) solutions has offered an immense opportunity for the collection and dissemination of health records in a central data platform. Electrocardiogram (ECG), a fast, easy, and non-invasive method, is generally employed in the evaluation of heart conditions that lead to heart ailments and the identification of heart diseases. The deployment of IoT devices for arrhythmia classification offers many benefits such as remote patient care, continuous monitoring, and early recognition of abnormal heart rhythms. However, it is challenging to diagnose and manually classify arrhythmia as the manual diagnosis of ECG signals is a time-consuming process. Therefore, the current article presents the automated arrhythmia classification using the Farmland Fertility Algorithm with Hybrid Deep Learning (AAC-FFAHDL) approach in the IoT platform. The proposed AAC-FFAHDL system exploits the hyperparameter-tuned DL model for ECG signal analysis, thereby diagnosing arrhythmia. In order to accomplish this, the AAC-FFAHDL technique initially performs data pre-processing to scale the input signals into a uniform format. Further, the AAC-FFAHDL technique uses the HDL approach for detection and classification of arrhythmia. In order to improve the classification and detection performance of the HDL approach, the AAC-FFAHDL technique involves an FFA-based hyperparameter tuning process. The proposed AAC-FFAHDL approach was validated through simulation using the benchmark ECG database. The comparative experimental analysis outcomes confirmed that the AAC-FFAHDL system achieves promising performance compared with other models under different evaluation measures.

摘要

近年来,物联网 (IoT) 解决方案的快速发展为在中央数据平台上收集和传播健康记录提供了巨大的机会。心电图 (ECG) 是一种快速、简便、非侵入性的方法,通常用于评估导致心脏疾病和识别心脏疾病的心脏状况。物联网设备在心律失常分类中的部署有许多好处,如远程患者护理、连续监测和异常心律的早期识别。然而,诊断和手动分类心律失常具有挑战性,因为 ECG 信号的手动诊断是一个耗时的过程。因此,本文提出了一种在物联网平台中使用农田肥力算法与混合深度学习 (AAC-FFAHDL) 方法进行自动心律失常分类的方法。所提出的 AAC-FFAHDL 系统利用经过超参数调整的 DL 模型对 ECG 信号进行分析,从而诊断心律失常。为此,AAC-FFAHDL 技术首先对输入信号进行数据预处理,将其转换为统一格式。此外,AAC-FFAHDL 技术使用 HDL 方法检测和分类心律失常。为了提高 HDL 方法的分类和检测性能,AAC-FFAHDL 技术涉及基于 FFA 的超参数调整过程。通过使用基准 ECG 数据库进行模拟验证了所提出的 AAC-FFAHDL 方法。对比实验分析结果表明,与其他模型相比,AAC-FFAHDL 系统在不同的评估指标下具有较好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1a4/10575382/c9b0e25009e2/sensors-23-08265-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验