Department of Computer Sciences and Engineering, Institute of Advanced Research, Gandhinagar 382426, Gujarat, India.
Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India.
Sensors (Basel). 2023 Jan 12;23(2):890. doi: 10.3390/s23020890.
Recently, with the massive growth of IoT devices, the attack surfaces have also intensified. Thus, cybersecurity has become a critical component to protect organizational boundaries. In networks, Intrusion Detection Systems (IDSs) are employed to raise critical flags during network management. One aspect is malicious traffic identification, where zero-day attack detection is a critical problem of study. Current approaches are aligned towards deep learning (DL) methods for IDSs, but the success of the DL mechanism depends on the feature learning process, which is an open challenge. Thus, in this paper, the authors propose a technique which combines both CNN, and GRU, where different CNN-GRU combination sequences are presented to optimize the network parameters. In the simulation, the authors used the CICIDS-2017 benchmark dataset and used metrics such as precision, recall, False Positive Rate (FPR), True Positive Rate (TRP), and other aligned metrics. The results suggest a significant improvement, where many network attacks are detected with an accuracy of 98.73%, and an FPR rate of 0.075. We also performed a comparative analysis with other existing techniques, and the obtained results indicate the efficacy of the proposed IDS scheme in real cybersecurity setups.
近年来,随着物联网设备的大规模增长,攻击面也加剧了。因此,网络安全已成为保护组织边界的关键组成部分。在网络中,入侵检测系统(IDS)用于在网络管理过程中提出关键标志。一个方面是恶意流量识别,其中零日攻击检测是一个关键的研究问题。当前的方法是针对 IDS 的深度学习(DL)方法,但 DL 机制的成功取决于特征学习过程,这是一个开放的挑战。因此,在本文中,作者提出了一种结合 CNN 和 GRU 的技术,其中提出了不同的 CNN-GRU 组合序列来优化网络参数。在模拟中,作者使用了 CICIDS-2017 基准数据集,并使用了精度、召回率、假阳性率(FPR)、真阳性率(TRP)和其他对齐的指标。结果表明有了显著的改进,其中许多网络攻击的检测准确率达到了 98.73%,FPR 率为 0.075。我们还与其他现有技术进行了比较分析,结果表明,所提出的 IDS 方案在实际网络安全设置中的有效性。