Suppr超能文献

从全流程视角对数字孪生的全面综述:数据、模型、网络与应用

A Comprehensive Review of Digital Twin from the Perspective of Total Process: Data, Models, Networks and Applications.

作者信息

Wu Honghai, Ji Pengwei, Ma Huahong, Xing Ling

机构信息

The School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China.

出版信息

Sensors (Basel). 2023 Oct 8;23(19):8306. doi: 10.3390/s23198306.

Abstract

With the rapid development of industrial digitalization and intelligence, there is an urgent need to accurately depict the physical world in digital space, and, in turn, regulate and optimize the behavior of physical entities based on massive data collection and analysis. As a technology that combines virtual space and physical space, digital twin can satisfy all of the above needs, and has attracted widespread attention. Due to the promising application prospects of digital twins, both academia and industry have launched research in this field, and related studies have been conducted from different perspectives. Accordingly, some articles summarizing the existing work have also been published, but they are all from a single perspective, lacking a systematic introduction and summary. Based on this, this paper conducts a comprehensive review of the existing work on digital twins from four perspectives: data, model, network and application, and strives to gain a better understanding of the development of the field from the physical to the virtual and back to the physical. Meanwhile, current research challenges and future directions for the development of digital twins are all discussed.

摘要

随着工业数字化和智能化的快速发展,迫切需要在数字空间中准确描绘物理世界,进而基于海量数据的收集和分析来规范和优化物理实体的行为。作为一种将虚拟空间与物理空间相结合的技术,数字孪生能够满足上述所有需求,并已引起广泛关注。由于数字孪生具有广阔的应用前景,学术界和工业界均已在该领域展开研究,且相关研究已从不同角度进行。相应地,一些总结现有工作的文章也已发表,但它们均来自单一视角,缺乏系统的介绍和总结。基于此,本文从数据、模型、网络和应用四个视角对数字孪生的现有工作进行全面综述,力求更好地理解该领域从物理到虚拟再回到物理的发展过程。同时,还讨论了数字孪生当前的研究挑战和未来发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/936b/10575411/c114e8108aeb/sensors-23-08306-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验