Laboratoire d'Electronique Antennes et Télécommunications (LEAT), Université Côte d'Azur, 06000 Nice, France.
Laboratoire Jean Alexandre Dieudonné, Université Côte d'Azur, 06000 Nice, France.
Sensors (Basel). 2024 Oct 16;24(20):6663. doi: 10.3390/s24206663.
One of the most common shoulder injuries is the rotator cuff tear (RCT). The risk of RCTs increases with age, with a prevalence of 9.7% in those under 20 years old and up to 62% in individuals aged 80 years and older. In this article, we present first a microwave digital twin prototype (MDTP) for RCT detection, based on machine learning (ML) and advanced numerical modeling of the system. We generate a generalizable dataset of scattering parameters through flexible numerical modeling in order to bypass real-world data collection challenges. This involves solving the linear system as a result of finite element discretization of the forward problem with use of the domain decomposition method to accelerate the computations. We use a support vector machine (SVM) to differentiate between injured and healthy shoulder models. This approach is more efficient in terms of required memory resources and computing time compared with traditional imaging methods.
最常见的肩部损伤之一是肩袖撕裂(RCT)。RCT 的风险随着年龄的增长而增加,在 20 岁以下人群中的患病率为 9.7%,在 80 岁及以上人群中高达 62%。在本文中,我们首先提出了一种基于机器学习(ML)和系统先进数值建模的微波数字孪生原型(MDTP),用于 RCT 检测。我们通过灵活的数值建模生成了散射参数的可推广数据集,以避免现实世界数据收集的挑战。这涉及使用域分解方法求解有限元离散化正向问题的线性系统,以加速计算。我们使用支持向量机(SVM)来区分受伤和健康的肩部模型。与传统成像方法相比,这种方法在所需的内存资源和计算时间方面效率更高。